CIVL 7/8111 1-D Boundary Value Problems - Higher Order Elements 1/68

1-D FEM - Higher Order Interpolation Functions

In our discussions about finite element methods up to this
point we have used a linear elemental interpolation to
describe the variation of the function u over an element.

The main advantage of linear interpolation functions is that
terms involving the derivative are relatively simple

mathematically //

u(x) ‘ Linear interpolation solution
u(a)
u(b)
| : 3 X
¢ ° Py ° . ° *
X =a X, 3 X4 Xs Xg XN Xy, =b

1-D FEM - Higher Order Interpolation Functions

In addition, the transformation from elemental coordinates,
¢, to global coordinates, X, is very straightforward and does
not increase the complexity of the problem.

// Exact solution

‘ Linear interpolation solution
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However, the advantages may be overshadowed by the fact
that the derivative of the solution, u, over an element is

constant.

This fact introduces a relatively large discontinuity in any
derived variables at interelement boundaries.
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In this section, to improve the accuracy of our solution and
avoid the disadvantages associated with a linear element,
we will introduce and discuss quadratic elemental
interpolation.
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1-D FEM - Higher Order Interpolation Functions

Quadratic Interpolation - A quadratic curve is uniquely
defined by three points.

Therefore, a set of elemental shape functions constituting a
quadratic interpolation will be defined over a three-node
element.

u(x)

nodes elements

RN

Xp=a X, X5 X,

T Xy2 Xnot Xy Xy =D

1-D FEM - Higher Order Interpolation Functions

Quadratic Interpolation - The quadratic variation of the
unknown function over an element may be written in global

coordinates as: )
U, =C,+C,X +C,X

Matching the values of the function at the endnodes of each
element require u, to be:
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1-D FEM - Higher Order Interpolation Functions

Quadratic Interpolation - The quadratic variation of the
unknown function over an element may be written in global

coordinates as: )
U, =C, +C,X +C,X

Matching the values of the function at the endnodes of each
element require u, to be:
U, =C,+CX, +C,X° =U,

— 2 _
Ue =Cy +CoXipy +C3Xiyy = Uiy

— 2 _
Ue =Cy +CoXipp +C3Xip = Uiy

where u;, u,, and u,, are the values of the unknown
function at x;, x;,; and x,, respectively.

1-D FEM - Higher Order Interpolation Functions

Quadratic Interpolation - Solving for c,, c,, and c; results in
the following equation:

U, = Niui + Ni+1ui+1 + Ni+2ui+2

where: ~ (X =X, ) (X = Xi12)
N = (Xi Xi+1)(xi _Xi+2)
o (x=x)(x=x%,2)
T X))

4/68



CIVL 7/8111 1-D Boundary Value Problems - Higher Order Elements

1-D FEM - Higher Order Interpolation Functions

Quadratic Interpolation - The derivative of u may be
computed as:

U = N U + N|+1u|+1 + N|+2u|+2

where: N/ — (2% = X4 _XI+2)

i (Xi_ m)( |+2)
)

(2x =% — X,

- (Xi+1 — X )(Xi+1 X'+2)

N/ . = (X_Xi _Xi+1)

(Xi+2 =X )(Xi+2 - Xi+1)

1-D FEM - Higher Order Interpolation Functions

Quadratic Interpolation - In matrix form we may write the
variation of u, and u,’ over an element as:

_ NT r\T
u, =Nu, u, =N"u,

where the vectors N, N’, and u, are:

N, N/ u.
N= Ni+1 N = N|'+1 U, =9 U4
Ni+2 Ni'+2 ui+2

5/68
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1-D FEM - Higher Order Interpolation Functions

Quadratic Interpolation - It is often more convenient to
express interpolation functions in terms of an elemental
coordinate system & Therefore, the quadratic interpolation
functions may be written as:

1-D FEM - Higher Order Interpolation Functions

Quadratic Interpolation - It is often more convenient to
express interpolation functions in terms of an elemental
coordinate system &. Therefore, the quadratic interpolation
functions may be written as:

N, =—4& +4¢
i+1 N-,




CIVL 7/8111 1-D Boundary Value Problems - Higher Order Elements

1-D FEM - Higher Order Interpolation Functions

Quadratic Interpolation - It is often more convenient to
express interpolation functions in terms of an elemental
coordinate system & Therefore, the quadratic interpolation
functions may be written as:

1-D FEM - Higher Order Interpolation Functions

Quadratic Interpolation

7/68
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1-D FEM - Higher Order Interpolation Functions

Quadratic Interpolation

N/ A

N/ =4¢&-3
1 /
1 = A A
£=0 £t I
-3
NiaA N, =-85+4
4
£=0 é

1-D FEM - Higher Order Interpolation Functions

Quadratic Interpolation - In a manner identical to the linear
elemental transformation we discussed in an early section,
the quadratic element transformation from global
coordinates, X, to element coordinates, £ may be written
as:

:(252 —3§+’|)Xi +(—4§2 +4§)Xi+1 +(2§2 _éz)xnz
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1-D FEM - Higher Order Interpolation Functions

Quadratic Interpolation - Differentiating x with respect to &
gives:

:—édé [(48-3)% +(-8&+4)x,,, +(4£ - 1)x,, |d&

At first observation, the quadratic transformation seems to be
more complicated than the linear transformation.

However, if we assume the three nodes defining the
quadratic element are equally spaced, it can be shown that
the transformation becomes:

dx =1.d¢& |, =X,., —X; =length of the element

e

X=X+l

1-D FEM - Higher Order Interpolation Functions

Variational Formulation using Quadratic Elements -
Recall the Sturm-Liouville boundary value problem we have
discussed previously:

pu’—qu+Apu+f =0 a<x<b
—p(a)u’'(a)+au(a)=A
p(b)u’(b)+Au(b)=

with the corresponding functional:

Z(u) =T[ —qu uf}dxqL au(za)z + ﬂuéb)z + Au(a)+ Bu(b)
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1-D FEM - Higher Order Interpolation Functions

Variational Formulation using Quadratic Elements - By
discretization of the functional using a quadratic elemental
interpolation results in:

Z(u)=;XT2 [—p(u')z—qu2 —uf]dx+ au(za)z + ﬂu(zb)z +Au(a)+Bu(b)

The approximation of the energy functional may be written in
the following form:

z(u)=z[zpezzqe_zfe}“”(a) +ﬂ“;b) _ Au(a)-Bu(b)

2

1-D FEM - Higher Order Interpolation Functions

Variational Formulation using Quadratic Elements - The
integrals Z_, Z., and Z, are defined as:

pe' “—qe’
Z,.= j u’'p(x)u’ dx Z,= I uq(x)u dx
Z. = j uf(x) dx

X

Substituting the coordinate transformation for x in the

integrals Z,,., Z.,, and Z;, result in:

1

Z,, = fup(x)u L d¢ Z,, = [ug(xul, dé

0

j x)I, dé&
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1-D FEM - Higher Order Interpolation Functions

Variational Formulation using Quadratic Elements - Now
we replace the function u and it's derivative u’ with the
quadratic elemental approximation using the shape
functions in the elemental coordinate &.

For example, consider the integral Z

Zzl

pe |2
e

uIN'p(x)N"u, I_d¢&

O'—'_\

where p,, is defined as:

N'p(x)N'T d¢&

1
pe:|_

o!—,_x

e

1-D FEM - Higher Order Interpolation Functions

Variational Formulation using Quadratic Elements - The
integrals Z,, and Z;, may be written in a similar manner:

1
Z, ~ ( [Na(ONT 1, dﬁJUe = ulqu,
0
1

qu(x)NT |.dé&

0

q.

1
2, = { Moo e fu, = ul,

0

f, = [Nf(x)l.dé&

o!—._\



CIVL 7/8111 1-D Boundary Value Problems - Higher Order Elements

1-D FEM - Higher Order Interpolation Functions

Variational Formulation using Quadratic Elements - Let’s

examine in detail the integrals p,, q,, and f,. Consider the
integral p,:

11 ! !
P, =~ [NPOONT dg

1 ’ Ni’
= Ilj N/, p(X)<Ni, N/, Ni'+2>dé‘
°0 Ni,+2
[4&-3
_ Ilj BE+4(p(X)(45-3 -BE+4 4E-T)de
©0| 451

1-D FEM - Higher Order Interpolation Functions

Variational Formulation using Quadratic Elements - Let’s

examine in detail the integrals p,, q,, and f,. Consider the
integral p,:

11 .
P, =~ [NPOONT dg
(4£ -3’ (-82+4)(46-3)  (4&-1)(4£-3)

j(—8§+4)(4§—3) (-8£+4Y  (-8&+4)(4&-1)|p(x)dé
| (4E-1)(4E-3) (-8E+4)(4E-1) (42 -1)

1
|

e

X=X +&I,

12/68
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1-D FEM - Higher Order Interpolation Functions

Variational Formulation using Quadratic Elements - Let’s
examine in detail the integrals p,, q,, and f,. Consider the
integral q.:

q, = [NG(ON" I, d¢

N.
1 |
:J‘ N, Q(X)<Ni Ni.q Ni+2>|ed§
° Ni+2
267 -3¢ +1
= [ 42 g [q()(287 3841 AE 4 28 - £)) de
ol 2gt-e

1-D FEM - Higher Order Interpolation Functions

Variational Formulation using Quadratic Elements - Let’s
examine in detail the integrals p,, q,, and f,. Consider the
integral q.:

1
d, = [Na(x)N"|, d¢
0
(2&2 73§+1)2 (282 -3¢ +1)(-4&% +4¢) (282 -3&+1)(28° -¢)

(-4&° +4¢)(2&° -3 +1) (-4&>+ 45)2 (-4&° +4¢)(28° - &) |a)l, dé
(262 -¢)(27 -36+1) (287 -&)(-a¢" +42) (262 -¢)

ot—

X=X +<|,

13/68
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1-D FEM - Higher Order Interpolation Functions

Variational Formulation using Quadratic Elements - Let’s
examine in detail the integrals p,, q,, and f,. Consider the
integral f:

f = [Nf(x)l, dé&

o!—._\

| N
JANL 001 dé
° Ni+

, X=X +&l,
(282 -3&+1
:j —4E +4E (X))l dE
"l 28°-¢

1-D FEM - Higher Order Interpolation Functions

Variational Formulation using Quadratic Elements - The
integrals and the boundary conditions are handled in
exactly the same manner as we have discussed before.

Therefore, the functional Z is now a function of the nodal

values u;: T
u. K.u
_ Ys NgYe T
Z (u;,U,,Us, .. ,uN+1)_T—uG Fs
where:
Ks =) ke +BT, F.=> f, +bt,
e e
a 00 - 0 A
000 -0 0
BT,={0 0 0 - O bt, =<0

000 - g B
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1-D FEM - Higher Order Interpolation Functions

Variational Formulation using Quadratic Elements -
Recall the energy functional Z(u) has the form:

Z (U Uy )

and has a stationary value that is obtained by requiring
each partial derivative to vanish:

z=0 i=12,...,N+1
ou.,

in matrix notation this relationship is:

az _
Oug

0 - Koug =F,

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Now we will investigate the problem of one-dimensional heat

transfer for a circular-cross section bar conducting heat
along the axis of the bar as shown below.

T=T, tConvection

L\‘

We will assume that convection occurs along the length of
the bar and at the end

15/68
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

With T the temperature, the governing equation and
boundary conditions can be expressed as:

(kztgT')' =h2zr, (T -T,) =0 O<x<L

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Nondimensionalize by taking u = (T - T,)/ (T, - T,,) and
x/L = s, after which the problem can be restated as:

0 O0<s <1

(u) —¢*
u(o
(1

)=1
u'(1)+wu(1)=0

2yl

16/68
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Comparing with the standard form,p=1,9g=¢%,f=0,A= «
=B=0,and = y.

pu’—qu+Apu+f =0 a<x<b

|

©
—_

QO
~

e
=

QD

J+au(a)=A
)+pu(b)=B

©
—~
(o3
~

c
—~
(o)

Consider first a one-element quadratically interpolated
model.

The numerical results will be based on the specific values:
w=1and ¢2=10.

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Variational formulation using a single quadratic element, the
integrals p, and q, are defined as:

P, =}N’N’Td§
0

1

q, = [N(10)N" d¢

0
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Variational formulation using a single quadratic element, the
integrals p, and q, are defined as:

(I
pe‘le!”N dé
e
:_J Ni,+1 <Ni, Ni’+1 Ni,+2>d§
° Ni.,
4¢£ -3

- j—8§+4 (46 -3 -8&+4 4&-1)d¢
01 4£-1

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Variational formulation using a single quadratic element, the
integrals p, and q, are defined as:

)
pezlle'N'ng
e 0

1 (4&-3) (-8£+4)(46-3) (4£-1)(4£-3)
:llj (-8E+4)(45-3)  (-8£+4)°  (-8F+4)(4&-1)|ds
TO| (45-1)(4-3) (-8E+4)(42-1) (4 1)
7 -8 1
=% -8 16 -8
1 -8 7
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Variational formulation using a single quadratic element, the
integrals p, and q, are defined as:

:Jqu(x)NT |, dé

1 Ni
:J Ni+1 (10)<Ni Nm Ni+2>|ed§

—-3&+1
—4§ +4¢ 252—3§+1 457 1 A 252—§>|ed§
25 - ¢

=10

O ey &

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Variational formulation using a single quadratic element, the
integrals p, and q, are defined as:

= [Ng(NT I.d¢

(262 -3¢ +1)° (267 -3 +1)(-4£% +42) (262 -3¢ +1)(222 - ¢)

= 10] (-4& +4¢)(2&° -3 +1) (42 +4§)2 (-4&° +4¢)(2&° - ¢) |d¢
(282 -¢)(222 32 +1) (282 - £)(-a¢ + 4¢) (22 - &)
, 4 2 -1
=—| 2 16 2
3

-1 2 4

19/68
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

WithA=«a =B =0, and = y, bt; =0 and

00O0 -0 0

00O0 -0 0

BT,=|0 0 O --- O bt; =40

00 0 -1 0

KG:Z ke, +BT,

] 7 -8 1 4 2 -1 0 0O
A -8 16 -8 +1 2 16 2| +|0 0 O
3 1 -8 7 -1 2 4 0 0 1
P. d. BT,

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

The unconstrained global equations can be expressed in
augmented form as:

: 11 6 0]y, 0
Keug =F; = —-|-6 32 —6|ju,; =<0
0 6 14]|u, 0

The essential boundary condition u(0) = 1 is enforced as the

constraint u, = 1, which leads to:

12.0__0|[y 1
% 0,32 -6 |u,;=12
0:-6 14 ||(u,] |O

20/68
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Solution - The equations are ready to be solved.

u, =1 u, =0.203883 u, =0.087379

The variation of u over the element is described as:
u, =Nu, + N, u, + N, ,u,
= [(252 —~3&+1)+0.203883(-4&7 +4¢)
= +0.087379(2&7 - 5)]

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Variational formulation using a single quadratic element.

/ 1 quadratic element FEM

21/68
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Computation of Derived Variables - Since we used a
quadratic interpolation in the variational formulation we can
calculate an approximate value of u’ the quadratic elemental
interpolation functions:

!
i+1

!

r_ 1,
u, =N/u, + N/ u, + N/ U,

~[(4¢-3)+0.203883 (8% + 4)
+0.087379(4¢ ~1)]

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Variational formulation using a single quadratic element.

| x

0
i 2 0.4 05 6 0.7
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

The essential boundary condition is satisfied automatically by
enforcing the corresponding constraint.

The natural boundary condition is only satisfied in the limit as
the number of nodes and elements is increased.

With =1, the nondimensional form of the boundary
condition at s = 1is: u’(1)+yu(1)=0

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

u'(1)+ypu(1)=0

4(1)-3 2(1) =3(1) +1
(1.0 0.203883 0.087378)|-8(1)+4
4(1)-1

{u}’ N N

This calculation shows the 1-element solution show a quite
large error in satisfying the natural boundary condition
ats=1.
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Let repeat the variational formulation using two quadratic
elements, the integrals p, and q, are defined as:

_ 1 1 ANl
pe_dNN dé
g N
:_J-<Ni,+1 (N/ Ni; NP, )de
Ie0 N-'z
[4e-3
:llj _8E+4H(45-3 8244 4r-1)dE
e 0| 4¢ -1

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Let repeat the variational formulation using two quadratic
elements, the integrals p, and q, are defined as:

1
P, = NN -
e 0

1 (4£-3) (-82+4)(46-3) (4&-1)(4£-3)
=2[ |(-85+4)(45-3)  (-82+4)
Dl (46-1)(45-3)  (-8&+4)(4s-1) (42 -1)
7 -8 1
_2 -8 16 -8
3 1 -8 7

(-8&+4)(4s-1)|d¢

24/68
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Let repeat the variational formulation using two quadratic
elements, the integrals p, and q, are defined as:

:Jqu(x)NT |, d&

1 Ni
:J Ni+1 (10)<Ni Nm Ni+2>|ed§

—-3&+1
=10

O ey &

28 -¢&

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Let repeat the variational formulation using two quadratic
elements, the integrals p, and q, are defined as:

= [Ng(x)NT I.d¢ | =—

(2&2 -3¢ +1) (262 -3¢ +1)(-4£2 +42) (262 -32+1)(282 - ¢)

j (-4£% +4¢)(2&7 -3¢ +1) (4% +agy (-4£% +4¢)(287 - &) |de
(282 -¢&)(282 32 +1) (282 -&)(-4& + 4¢) (282 &)
] 4 2 1
=—| 2 16 2
6

-1 2 4

—4§ +4¢ 252—3§+1 457 1 A 252—§>|ed§
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

WithA=«a =B =0, and = y, bt; =0 and

000 -0 0
000 -0 0
BT,=|0 0 O --- O bt; =40
000 -1 0

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

The unconstrained global equations can be expressed in
augmented form as: K u, =F

Element 1 ~ )

32 -30 3 0 0 ||u, 0
-30 80 -30 0 0 ||u, 0
% 3 -30 | 64| -30 3||su; =40
0 0 |I-30 80 -30||u, 0
0 0 3 -30 38 || |Us 0

Element 2

26/68
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1-D FEM - Higher Order Interpolation Functions
One-Dimensional Heat Conduction with Convection

The essential boundary condition u(0) = 1 is enforced as the
constraint u, = 1, which leads to:

LTI IINONIIoNo| | (@) [
0, 80 -30 0 0|y 5
%oi 30 64 -30 3 [{u,l={-05
0, 0 -30 80 -30]||u, 0
0, o 3 -30 38|y | 0O

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Solution - The equations are ready to be solved.

u,] [1.000000
u,| |0.454417
U, t =10.211779
u,| |0.103911
u;] (0.065315

The variation of u over the element 1 is described as:
Ue =Nju; +N; U, +N; U,
=[(28° -3 +1)+0.454417 (<427 + 4¢)
= +0.211779(2£2 - 5)]
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Solution - The equations are ready to be solved.

u,] [1.000000
u,| |0.454417
U, t=10.211779
u,| |0.103911
u;] (0.065315

The variation of u over the element 2 is described as:

Ue, = N.u, + N, u, +N, U,

i+1

= [0-21 1779(2£% - 3£ +1)+0.103911(—4£% + 4¢)

= +0.065315(2&7 - 5)]

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Variational formulation using two quadratic elements.

0.1 i
@

o
(=}
-
o
[N
<
w
(=}
n

0.6 0.7 0.8 09 1

/ quadratic element 2

28/68
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Computation of Derived Variables - Since we used a
quadratic interpolation in the variational formulation we can
calculate an approximate value of u’ using the quadratic
elemental interpolation functions:

!’ !, ! !
Uy, = Nu; + N U, + N LU,

=|(4£-3)+0.454417 (-85 + 4)
+0.211779(4& - 1) |

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Computation of Derived Variables - Since we used a
quadratic interpolation in the variational formulation we can
calculate an approximate value of u’ using the quadratic
elemental interpolation functions:

!
e

! [ !
u , Niu3 + Ni+1u4 + N'+2u5

=|0.211779(4& -3)+0.103910(-8¢ + 4)
+0.065315(4& - 1) |
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Variational formulation using two quadratic element.

o
v
| x

0 — 0
1

06—07® G309
-1.5 .
quadratic element 1

\ quadratic element 2

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

The essential boundary condition is satisfied automatically by

enforcing the corresponding constraint.

The natural boundary condition is only satisfied in the limit as

the number of nodes and elements is increased.

With =1, the nondimensional form of the boundary
condition at s = 1is: u’(1)+yu(1)=0

30/68
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection
u'(1)+ypu(1)=0

(0.211780 0.103911 0.065315) {8(1)+4

{u}’ Ny N

This calculation shows the 2-element solution is a significant

improve over the 1 element solution at satisfying the natural
boundary condition ats = 1.

Recall, for the one element solution: u’(1)+wu(1)=0.5340 =0

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Let repeat the variational formulation using four quadratic
elements, the integrals p, and q, are defined as:

1
pez%JNN"df
e 0

R
:E.([ Ni:+1 <Ni, Ni’+1 Ni,+2>d§
Ni+2
. 4¢ -3
:T—j—8§+4 (46 -3 -8&+4 4&-1)d¢
© 0| 451
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1-D FEM - Higher Order Interpolation Functions
One-Dimensional Heat Conduction with Convection

Let repeat the variational formulation using four quadratic
elements, the integrals p, and q, are defined as:

=: ! N'NT dé& =7
1 (4¢ - 3) (-8£+4)(45-3) (46-1)(4&-3)
=4[ |(-82+4)(4¢-3) (-8¢ +4)° (-8 +4)(4£ 1) |d¢&
| (4c-1)(4£-3) (-8&+a)(4c-1)  (4£-1)

28 %2 4
=532 64 32
4 -32 28

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Let repeat the variational formulation using four quadratic
elements, the integrals p, and q, are defined as:

- Jqu(x)NT |, dé
o1 N
:j N, (10)<Ni N, Ni+2>|ed§

—-3&+1
—4§ +4¢ (28232 +1 4%+ 48 282 - &)l dé

28 -¢&

=10

O ey &
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Let repeat the variational formulation using four quadratic
elements, the integrals p, and q, are defined as:

1
1
e: N XNT Ied | = —
q j q(x)N" I, d& =7
(282 -3¢+ 1)2 (28* -3¢ +1)(-4&% +4¢) (282 -3&+1)(28° -¢)
:gj (~4¢? + 4¢) (227 3£ +1) (~4¢? + 4¢)’ (-4 +42)(282 - ¢) |de
(26 —¢) (26" 32 +1) (26" -¢)(4&" +4¢) (25 &)
1 4 2 -1
:E 2 16 2
-1 2 4

1-D FEM - Higher Order Interpolation Functions
One-Dimensional Heat Conduction with Convection

WithA=«a =B =0, and = y, bt; =0 and

000 -0 0
000 -0 0
BT,=/|0 0 O --- O bt, =40
000 - 1 0
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

The unconstrained global equations can be expressed in
augmented form as: K u, =F

Element 1 Element 2 Element 3 Element 4

116 -126 15 0 0 0 0 0 0 fu, 0
-126 272 -126/ O 0 0 0 0 0 u, 0
15 126 | 232 126 15 0 0 0 0 u, 0

0 0 |-126 272 -126] O 0 0 0 u, 0

% 0 0 15 126 | 232| -126 15 0 0 Ug =40
0 0 0 0 126 272 126 O 0 Ug 0

0 0 0 0 15 126 | 232 -126 15 | |u, 0

0 0 0 0 0 0 |-126 272 -126]|u, 0

| 0 0 0 0 0 0 15 126 128 | |u, 0

1-D FEM - Higher Order Interpolation Functions
One-Dimensional Heat Conduction with Convection

The essential boundary condition u(0) = 1 is enforced as the
constraint u; = 1, which leads to:

L o__o0__o _ o0 _0o__o__o __ou L
01212 126 0 0 0 0 0 0 |[u] |105
0,126 232 126 15 0 0 0 0 ||luy| |-125
0, 0 126 272 126 0 0 0 0 ||lu 0
%o: 0 15 126 232 126 15 0 0 |Ju;=1 O
0/ 0 0 0 126 272 126 0 0 ||y 0
0b 0 0 0 15 126 232 126 15 ||u, 0
9, 0 0 0 0 0 -126 272 -126||u, 0
o) 0o o o 0 0 15 126 128 ||u, 0
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Solution - The equations are ready to be solved.

u,] [1.000000 ug] [0.145197
u,| |0.674155 u,| |0.103274
U, t =10.455318 u, [ ]0.077654
u,| [0.308276 u,| 10.064320
u;| 10.210167

The variation of u over the element 1 is described as:

U =Nty +N; U, +N; Uy

=[(2¢2 -3¢ +1) +0.674155(-4¢* + 4¢)
+0.455318(2¢% - £) |

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Solution - The equations are ready to be solved.

u,] [1.000000 ug] [0.145197
u,| |0.674155 u,| |0.103274
u, t =10.455318 u, [ ]0.077654
u,| [0.308276 up| 10.064320
u;| (0.210167

The variation of u over the element 2 is described as:

U, = N.u, +N, u, + N, U

i+1

= [0.455318(2g2 3£ +1)+0.308276(-4&7 +4¢)

+0.210167(2¢2 —5)]
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Solution - The equations are ready to be solved.

u,] [1.000000 ug] [0.145197
u,| |0.674155 u,| |0.103274
u, t =10.455318 u, [ 0.077654
u,| [0.308276 up| 10.064320
u;| 10.210167

The variation of u over the element 3 is described as:

U, = N.us + N, ,us + N, U,

i+1

= [0.210167(252 ~3£+1)+0.145197 (4% + 4¢)

+0.103274(2¢2 - 5)]

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Solution - The equations are ready to be solved.

u,] [1.000000 ug] [0.145197
u,| |0.674155 u,| |0.103274
u, t =10.455318 u, [ ]0.077654
u,| [0.308276 up| 10.064320
u;| (0.210167

The variation of u over the element 4 is described as:

Ue, = N.u, + N, ug + N, Uy

i+1

= [0.103274 (28° - 3£ +1)+0.077654(—4£° + 4¢)

+0.064320(2¢2 - 5)]
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Variational formulation using four quadratic elements.

10 quadratlc element 1

quadratic element 2

quadratic element 3

quadratlc element 4

0.00 0.10 0.20 0.30 0.40 .50 0.60 0.70 0.80 0.90 1.00

0
X
L

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Computation of Derived Variables - Since we used a
quadratic interpolation in the variational formulation we can
calculate an approximate value of u’ using the quadratic
elemental interpolation functions:

=Ni iUy + N|+1u2 + N|+2u3

=|(4£-3)+0.674155(-85 + 4)
+0.455318(4& - 1) |
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Computation of Derived Variables - Since we used a
quadratic interpolation in the variational formulation we can
calculate an approximate value of u’ using the quadratic
elemental interpolation functions:

!
e

!, ! !/
Uy, = N/u; + N/ U, +N;,,U;

= [0.45531 8(4£-3)+0.308276(-8¢ +4)
+0.210167(4¢ —1)}

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Computation of Derived Variables - Since we used a
quadratic interpolation in the variational formulation we can
calculate an approximate value of u’ using the quadratic
elemental interpolation functions:

!/ !, ! !
Ue, = NjUs + N ug +N; U,

e | I

= [0.210167(45 —3) + 0.145197(—85 -+ 4)
+O.103274(4§ — 1)}
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Computation of Derived Variables - Since we used a
quadratic interpolation in the variational formulation we can
calculate an approximate value of u’ using the quadratic
elemental interpolation functions:

!
e

! ! !
Ue, = Njuz +Ni, g + N, ,Ug

=[0.103274(4& -3)+0.077635(-8¢ + 4)
+0.064320(4& - 1)]

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

Variational formulation using four quadratic elements.

X

L
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.0 ®

-0.1 o

A
” e \ quadratic element 4
0.3 - e

; quadratic element 3

-0.4

-0.5

06 quadratic element 2

u o7
-0.8
1 quadratic element FEM
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1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection

The essential boundary condition is satisfied automatically by
enforcing the corresponding constraint.

The natural boundary condition is only satisfied in the limit as
the number of nodes and elements is increased.

With =1, the nondimensional form of the boundary
condition at s = 1is: u’(1)+yu(1)=0

1-D FEM - Higher Order Interpolation Functions

One-Dimensional Heat Conduction with Convection
(1) +pu(1)=0

(0.103274 0.077635 0.064320) {8(1)+4

{u}’ N} {NO)S

This calculation shows the 4-element solution is a significant
improve over the 2 element solution at satisfying the natural
boundary condition ats = 1.

Recall, for the two element solution: u’(1)+wu(1)=0.0495 =0
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1-D FEM - Higher Order Interpolation Functions

Example - Consider the problem of the axial deformation of a
prismatic bar we worked previously.

u(x) Q(x):QO(1—%j
< E = 29,000ksi
ax) A=1in?
Q, =10kKipsf/in.
10ft.
The boundary value problem for this case is:
(AEU)'+Q(x)=0 0<x<L

u(0)=0

the boundary conditions are:
AEu'(L)=0

1-D FEM - Higher Order Interpolation Functions

Example - The Sturm-Liouville form of this equation requires
thatp=AE,gq=0,f=Q(x),andA=B=a=£=0.

The corresponding functional is:

L(AE (u')’
Z(u)=J ﬂ—Q(x)u dx
5 2
Discretization - The domain will be divided into three nodes.
u(x)
-------------------- > | =L
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1-D FEM - Higher Order Interpolation Functions

Interpolation - We will use a quadratic element.

In developing a Ritz FEM model, the solution was
represented in the form of a set of admissible functions:

u,=Nu +N_u. ,+N._u.,,

i+1-7+1 i+2

X =NX; + N, X, +N, X,

i+17%+1

Element Formulation - The approximation of the energy
functional may be written in the following form:

Z(u)=>_ (%—zfe}jx

1-D FEM - Higher Order Interpolation Functions

Element Formulation - Where the integrals Z . and Z, are
defined as:

Z, = XTzu’AEu’ dx Z. = XiJtzQ(x)u dx

X:

i X

Element Formulation - Substituting the coordinate

transformation for x in the integrals Z, and Z, result in

Ze :Ilj; U'AEu’ dé& :[Q x +§I ul.dé

e
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1-D FEM - Higher Order Interpolation Functions

Element Formulation - Now we replace u’ with the linear
elemental approximation using the shape functions in the
elemental coordinate &.

T 1 1 T T
Z, = U, I—JN AEN" d¢ |u, = u,p.u,

e 0

1
pe=|1jN'AEN'ng
e 0

0

ZfezuZUNQ(x)ledéjue = u'f

f =

e

NQ(x)l.d&

o'-—._;

1-D FEM - Higher Order Interpolation Functions

Element Formulation - Therefore, the integrals p, and f,
may be written as:

(4¢3’ (-8£+4)(46-3) (4£-1)(4£-3)

AE |
pe= I

e 0

(45 -1)(4£-3) (-8&+4)(45-1) (4& 1)’

[2¢ —23§+1 o
f,=Q, [{ -4¢° +4¢ 1= |l d¢
Ol 287 -¢

[ |(-82+4)(4¢-3) (-8& +4)° (-8& +4)(4£ -1) |d¢
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1-D FEM - Higher Order Interpolation Functions

Assembly - The functional Z(u), through the discretization

and interpolation procedures has been converted into an
approximate function Z(u,, u,, us, . . ., Uy,,), Which may be
written as:

AE\Xu 'k u
Z(u1,u2,u3,...,uN+1):( C ]Z 92 ee _Yu,f
oz

EZO —> KGuG:FG

1-D FEM - Higher Order Interpolation Functions

Assembly - Consider the k, term for the quadratic element.

7 -8 1
pe:%—s 16 -8
1 -8 7

Assembly - The right-hand side terms involving the loading
function for each element are:

Q,
_Xxole (v L
6L (-L) 1
£ =1 Rl gy 12, —an)l =)o et
6L 6 0 x =0
Q,
_Xole (v 4] —L
(i +l-L)
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1-D FEM - Higher Order Interpolation Functions

Assembly - Compiling these terms into the global system
equations gives:

el 7 8 [ [
K, =F, = L -8 16 -8|:u, =% 2
1 -8 7 ||u, 0

Constraints - The global system “stiffness” matrix
constrained by the boundary condition u(0) = 0 is:

110 __0][y ] 0
/;—Eo:m -8 |4u, % 2
0!-8 7 ||u, 0

1-D FEM - Higher Order Interpolation Functions

Solution - The equations are ready to be solved.

QL’

2
U;=0  u,=0.14583=2 Qb

U, =0.16667 -

Solution - Substituting the numerical values for Q,, L, A, and
E into the displacement expressions gives:

u,=0 u, =0.7241in u, =0.8276in

Solution - The variation of u over the element is described as:

u,=Nu +N,u

+ Ni+2ui+2

i+1

"= Cio_lé[o.14583(—452 +4£)+0.16667(282 —¢))]
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1-D FEM - Higher Order Interpolation Functions

FEM Solution - Comparison of 1 quadratic element FEM
formulation with exact solution:

0.20

0.15

Exact Solution I\

0.10
1 quadratic element FEM
0.05 1 )
L
u(x)=a Q%
AE
0.00 T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
X
L

1-D FEM - Higher Order Interpolation Functions

Computation of Derived Variables - Since we used a
quadratic interpolation in the variational formulation we can
calculate an approximate value of u’ the quadratic elemental
interpolation functions:

r [ ' '
ue - I\Iiui + Ni+1ui+1 + Ni+2ui+2

’ OL
u'= i—E[O.14583(—8§ +4)+0.16667 (45 -1)]
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1-D FEM - Higher Order Interpolation Functions

FEM Solution - Comparison of 1 quadratic element FEM
formulation with exact solution:

0.50

0.40 1 1 quadratic element FEM
0.30 -

B o2 () 2

0.10 A
0.00 1 Exact Solution

-0.10 +

'020 T T T T
000 010 020 030 040 0.5

060 070 080 090 1.00

o

X
L

1-D FEM - Higher Order Interpolation Functions

Example - Repeat the previously problem using two
quadratic elements.

Discretization - The domain will be described by five nodes.

<«—25ft. ! 2.5ft. ! 2.5t ! 2.5ft.—>\

Interpolation - We will use a quadratic element.

U, = Niui + Ni+1u + Ni+2ui+2

i+1

X =N.X; + N, X, + N, X,

i+17%+1
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1-D FEM - Higher Order Interpolation Functions

Element Formulation - For each quadratic element the terms
p. and f, are:
1 (4£-3) (-8&+4)(4£-3) (46-1)(4£-3)
AIE [ |(-82+4)(4¢-3) (-8¢ +4)° (-8& +4)(4£ 1) [d¢&
T (46-1)(42-3) (-8&+4)(4E-1) (4¢-1)

[2¢ —23§+1 —
f,=Q, [{ 4&+4¢ {|1-T—== = |l.d¢
"l 28°-¢

1-D FEM - Higher Order Interpolation Functions

Assembly
For element #1: x,= 0 For element #2 : x; = 5 ft.
5 7 -8 1 5 /7 -8 1
p,= ?LE -8 16 -8 P, = ?LE -8 16 -8
1 -8 7 1 -8 7

Assembly - The right-hand side terms involving the loading
function for each element are:

~le
6L (x -L) ) 1
£ - —Q6LI‘*(4XA+2IE—4L) f;% 6 fzz% 2
Q 1 0
xX0e
oL =2e(x +1,-L)
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1-D FEM - Higher Order Interpolation Functions

Assembly Compiling these terms into the global system
equations gives:

Element 1

7 8 1|10 0]y, 2]
one| 2 16 BLO 0y 6]

Keug =F; T 1 -8 |14] -8 1|y, :ﬁ—l
0O 0 |-8 16 -8||u, 2| Etement2

0 0 [1 -8 7||u 10]

Element 2

Constraints - The global system “stiffness” matrix
constrained by the boundary condition u(0) = 0 is:

10 0 0 O ||y

2AE
3L

_ QL
24

onNv N O O

1-D FEM - Higher Order Interpolation Functions

Solution - The equations are ready to be solved.

2 2 2 2
u, =0.0964 QL u, =0.1458 QoL u, = O.1641Q°L u, =0.1667 Qb
AE AE AE AE

Solution - The variation of u over an element is described as:

u, =Nu +N,_ U, +N._u.,

i+171+1 i+2

- XL 0.0064(-4" + 42) +0.1458(227 - £)

element1 — AE
= Qoil‘z 2 _ A E2 2
Uotmentz = "2 [0.1458(25 3¢ +1)+0.1641(—4£ +4£)+0.1667 (2£ 5)]
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1-D FEM - Higher Order Interpolation Functions

FEM Solution - Comparison of a 2 quadratic element FEM
formulation with exact solution:

0.20
0.15 - Exact Solution I\
a

" 2 quadratic element FEM

0.05 4 ,
u(x)= a{QOL J

AE
0.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

X
L

1-D FEM - Higher Order Interpolation Functions

Computation of Derived Variables - Since we used a
quadratic interpolation in the variational formulation we can
calculate an approximate value of u’ the quadratic elemental
interpolation functions:

u, =Nu +N/,u.

i+171+1

'
+ Ni+2ui+2

Ugtement1 = 2:05" [0.0964(~8¢ +4)+0.1458(4& - 1) |

s!elementZ = ZQEL |:O1458(44:_3)4‘01641(—8§+4)+01667(4§—1)]

u

, 2Q,L , 2Q,L
element1 (5 = 1) = Aé [00518] ¢ uelement2 (é = O) = AE [00523]
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1-D FEM - Higher Order Interpolation Functions

FEM Solution - Comparison of a 2 quadratic element FEM
formulation with exact solution:

0.50

0.40 1
Exact Solution
0.30 |

0.20 -

0.10 -

0.00 .
2 quadratic element FEM ’/

-0.10 T T T T T T T T T
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

X
L

1-D FEM - Higher Order Interpolation Functions

PROBLEM #14 — Show by hand calculations each of the
following:

a) for a quadratic element with equally spaced nodes show
that: dx =1,d¢& where |, =(x,., —X,);

b) for a general linear approximations for p(x), q(x), and f(x)
derive the terms for the p,, q., and f, matrices.
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1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams

One important problem in engineering mechanics is the
analysis of beams subjected to a transverse load. A typical
beam bending problem may be posed as:

Q(x)

1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams - Since the governing
differential equation is a fourth-order relationship, we need
four boundary conditions.

Physical, we generally known two conditions, in terms of the
deflection, the slope, the bending moment, and/or the shear
force at each end of the beam.

The corresponding functional, representing the potential
energy, is:

L

Z(u):j %—Q(x)w dx
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1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams - The requirements of
the interpolation function used in the finite element
formulation are:

(1) continuity at the interelement boundaries, and
(2) the ability to approximate the solution as at least a
constant function that has a constant first derivative.

Functions that are required to be continuous are commonly
referred to as CO functions, with the superscript referring
to the zeroth derivative.

Z(u):JL‘ %—Q(x)w dx

1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams - In a fourth-order FEM
problem the interpolation functions are require to be at least
cubic polynomials.

Physically, this will allow the deflection, the slope, and the
bending moment to be C° continuous functions.

In addition, the deflection and the slope will have continuous
first derivatives; this is referred to as C' continuity.

I V4
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1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams

Cubic Interpolation - A cubic curve is uniquely defined by
four consecutive points or by two consecutive points and
two derivatives.

Therefore, for a beam element we will consider a set of
elemental shape functions constituting a cubic interpolation
over a two-node element.

u(x)

elements

1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams - The cubic variation of
the unknown function over an element may be written in

global coordinates as: 2 3
W, =C, +C,X +C,X" +C,X

Matching the values of the deflection and the slope at each
end of the element require w, to be:

w, (0)=w, w, (0)

e

w, (1) =w, w, (1)

e

0,
02

where w,, w,, 6,, and @, are shown below:
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1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams - The cubic variation of
the unknown function over an element may be written in

local coordinates as: _
w, =Nw, +N,6, + N,w, +N,6,

N, =28 -3 +1 N, =(&-28+¢)l,
N3 :—2534-352 N4:(§3_§2)|e

The set of shape functions are called Hermite (er MEET) or
cubic interpolating polynomials.

In matrix form we may write the variation of w over an

element as: N, w,
N 6

_NT N={ 2 w, ="

w, =N'w, N, " lw,

N 4

4 2

1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams - The Hermite
interpolation functions may be pictured as:

Charles Hermite (er MEET) (December 24, 1822 —
January 14, 1901) was a French mathematician who
did research on number theory, quadratic forms,
invariant theory, orthogonal polynomials, elliptic
functions, and algebra. Hermite polynomials, Hermite
interpolation, Hermite normal form, Hermitian
operators, and cubic Hermite splines are named in
his honor.
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1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams - The Hermite
interpolation functions may be pictured as:

N, =& =28 +¢

1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams - In a manner identical to
the linear elemental transformation we discussed in an
early section, the transformation from global coordinates, X,
to element coordinates, £ may be written as:

Xe =X +§(Xi+1 _Xi)
Differentiating x with respect to £ gives:

d

dx =—
dg

[(1_§)Xi +§Xi+1i|d§:(xi+1 _Xi)d§

dx = |ed§ |, =the length of the element
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1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams

Element Formulation - The potential energy of a
transversely loaded beam is:

(W):'Lf w—(}(x)w dx

The potential may be expressed as a sum of the potential
energies over all the elements:

X

Z(W):; ;[1 EI(TW")—Q(X)W dx

1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams
Element Formulation - which we will express as:

z(w)=; Ue+; Q,

where U, represents the potential energy of a beam

element and €, is the external energy applied to the beam
element. Therefore, the terms U, and Q_ are:

i1 1

20, = [ EI(w") dx = [EI(W")’l,d&

X 0

|
o,
I

= [ Qwax = [Q(xwl, de
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1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams

Element Formulation - Substituting the Hermite shape
function into the above expression for U, gives:

1
20, = [EI(w")’], d¢
0
1
=lj N"(EI)N""w, I, d& =wk,w,
0

4
Ie

where Kk, is:

=

°

1
k, =— [N"(EI)N'"" d¢&
0

@ w

1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams

Element Formulation - If the properties of the material, EI,
are constant over an element, then k, becomes:

126 -6
1 (65—4)Ie
e:go 12646 <12§—6 (6&-4)l, —12£+6 (6(,‘—2)Ie>d§
(6":_2)|e
(12¢-8)’ (12£-6) (6 - 4)1, -(12£-6) (12£-6) (65 -2)1,
El (12£ -6)(6& - 4)I, [(65—4)IE]2 -(12&-6)(6&-4)l, (6£-2)(6&-4)I2 §
"_ISO -(12£-6) -(12£-6)(6&-4)1, (12¢£-6) ~(12£-6)(6£-2)I,

(126-6)(66-2)l,  (66-2)(66-4)1" —(126-6)(6c-2)l.  [(66-2)LT
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1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams

Element Formulation - If the properties of the material, EI,
are constant over an element, then k, becomes:

12 el i 12 6l
El| 6 412 ' -6l 212

K = —|-—e__"e 1 e Te.
=T [-12 -el,1 12 -8l
6l, 212 -6l, 42

1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams

Element Formulation - Substituting the Hermite shape
function into the expression for Q3 gives:

-Q, = IQ(X)W |, d&

wNQ(x)l d& =w.q,

Il
ot—._\

Assuming Q is a linear function of &

Q(§)2(1_§)Qi +5Q;.
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1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams

Element Formulation - Substituting the Hermite shape
function and the linear variation of Q into Q, gives:

2&° —3&£% +1
Qe=j (&2 -2 +¢)),
2| 288 +38
(& -¢)1.

[(1-8)Q +&Q., I, dé&

21Q, +9Q,,,
IL (3Qi +2Qi+1)|e

°760| 9Q +21Q,,
(-2Q, —3Q..,)l.

1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams

Element Formulation - Substituting the Hermite shape
function and the linear variation of Q into Q_ gives:

7Qi +3Qi+1
2 v,
o . (Qi+3Qi+1j|e m,
° 20| 3Q+7Q., | |v,
2 m,
(_gQi _Qi+1J|e

where v,, v,, m;, and m, are shown below:

o, ™™

m,

4
/ !/
‘—o £=1
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1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams

Assembly - Assembly of the elemental stiffness matrices is
similar to assembly procedure we have previously
discussed.

For example, for an element indicated by a’s and a second
element by b’s the global system matrix is: Ejement 1

2, a, a, a, | 0 0]
Ay 8y A3 o 0 0
KG — zke — a31 a32 a33 + b11 a34 + b12 b13 b14
e a41 a42 a43 + b21 a44 + b22 b23 b24
0 0 b31 b32 b33 b34
L 0 0 b41 b42 b43 b44
Element 2

1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams
Assembly - The right-hand side becomes:

Vv, )1 Element 1

(mi+1 )2 Element 2
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1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams

Derived Variables - The derived variables for this problem
are the higher-order derivatives w” and w’.

They are related to the force variables, the moment M and
the shear Z given by the following expressions:
M =EIw" V =-EIw"

The moments M and the shear force Z at the ends of the
elements are given by the matrix equation:

W1 V'l

M

keWe = Fe —> ke 01 = 1
WZ V2
92 M2

1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams

Derived Variables - The value of the moment and shear
may be computed at any location within an element from:

12£-6 |
" " (65_4)|e
M=EWw"=EIw'N'=(w, 6 w, 6,) —12¢£+6
(6£-2)1,
12
V = _EIWW —Elw TNm — <W 0 W 0 > 6|e
e vt 2 T 12
6l
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1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams
Example - Consider the bending of a cantilever beam loaded
with a concentrated force at the end. Develop a variational

FEM model using a single beam element.
P

l W (EW) Q) 0sxsL
w(x)

For a single element the system equations are:
12 6L -12 6L ||w, Vv,

EI| 6L 41° -6L 2% (|6, | |m,

|12 -6L 12 -6L||w,[ |v,
6L 217 -6L 4L ||6, m,

1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams

Example - Applying the boundary conditions, w, = 6, =0,
and the transverse loading results in:

(oo o (w, 0
EIf0. 1.0 0|/ |0
*lo 0,12 -6L||w,| |-P
0 0 -6L 4]l6,] |0
The solution to these equations is:
PL® PL?
W, = ——— 0, =——
3E| 2E|
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1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams
Example - The variation of the deflection over the element is:

PL (500 o

w, =N,w, +N,6, =—@(3§ - &)
' ’ ’ PL2 2
w. =6 =Nw, +N,b, =—E(25—§ )

The above functions for the deflection and the slope of the
cantilever beam subjected to a concentrated force are
exact. The derived variables may be computed as:

M=EWw"=-PL(1-¢) V=-Elw"=-P

1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams

Example - Consider the bending of a simply supported beam
loaded with a uniform load. Develop a variational FEM
model using a single beam element.

Q(X)=q0

The terms associated with the loading function are:

7Q, +3Q,
2 -6

+— I
Q _Ii (Q\ 3Q\+1je _% —L
° 20| 3Q+7Q., [ 12|-6

2 L
(_EQ\ _Q\+1j|e
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1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams
Example - For a single element the system equations are:

12 6L -12 6L |[w, -6
EI| 6L 41° -6L 2% ||6,| ql|-L

*|-12 -6L 12 -6L||lw,[ 12 ]-6
6L 212 -6L 4126, L

After applying the boundary conditions, w, =w, =0, and the
transverse loading the system equations become:

1'0'0'0 |(w 0
Er[0 4210 [22]|6,| q,L|-L
|0 200 1100 w12 |8
0120210426, L

1-D FEM - Higher Order Interpolation Functions
Transverse Deflections of Beams
Example - The solution to these equations is:

o qOL3 9 B qOL3

' 24E] 2 24F|

The variation of the deflection over the element is:

Sob_ (2 )

w, =N,0, +N,0, = 4]
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1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams

Example - The deflection has a maximum value
at x=L/2 (¢ = %) of:

~ 4q,L* W 5q,L*
384E| exact T 384F|
L

0.00

-0.05
1 cubic element FEM

-0.10

-0.15 /

-020

-0.25

-0.30

-0.35

1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams
Example - The slope is:

1 cubic element FEM
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1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams

L3
The slopes at the end of the beam are: w' = iqo—
which are the exact values. 24E|
The derived variables may be computed as:
L2
M = Elw" = 0 V =—Elw"” =0
12
4 q08L2 / Exact Solution
qoL2 /\ Exact Solution
12 GoL /
2
g=2 ¢t

£=0 £=1 £=0
FEM solution FEM solution

1-D FEM - Higher Order Interpolation Functions

Transverse Deflections of Beams

PROBLEM #15 - Consider the bending of a simply supported

beam loaded with a uniform load.

Develop a variational FEM model using two cubic elements.

Compare your results with the single element solution in the

notes and the exact solution.

"

l
A A X

000 L

S— N (Em") =Q(x) 0<x<L
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End of
Chapter 2c





