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FINITE ELEMENT FORMULATIONS

Before you decide to drop the course and curse me for
convincing or making you take this class, let me tell you that
up till now we have not really discussed finite element
methods.

The basic mathematics we have previously discussed
provides us with a basis for understanding the inner
workings of FEM techniques. The two basic approaches
are:

1. The Ritz method - utilizes the energy or functional
associated with the differential equation as the base for
the finite element formulation

2. The MWR method - approximates the differential equation
directly as the base for the finite element formulation

1-D Boundary Value Problems - Linear Elements - Part 2

FINITE ELEMENT FORMULATIONS
Variational Finite Element Models

The steps involved in generating a FEM model using
variational techniques follows the same procedure as we
used in our discussion of the spring-mass system:

Discretization

Interpolation

Elemental Description or Formulation
Assembly

Constraints

Solution

Computation of Derived Variables
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FINITE ELEMENT FORMULATIONS

Discretization - The domain is broken up into a series of
subintervals:

u(x)

TEES elements

x=a X

Xya=b

The points that separate the subintervals are called nodes and
the subdomains between the nodes are called elements.

The entire discretization is often called a mesh. Later we will
discuss how the spacing of the mesh may effect the solution.

FINITE ELEMENT FORMULATIONS

Interpolation - At this point we have to decide what type of

interpolation or approximation we want over each element.

In past discussions of the axial deformation problem we
routinely used a linear element.

An element of this type assumes an linear variation of the
function over the element.

Therefore the function is represented as a series of linear
lines that are continuous at the nodes.

One obvious problem with a linear interpolation is that the
derivative of the approximation is discontinuous at each
node.

FINITE ELEMENT FORMULATIONS

Interpolation - At this point we have to decide what type of
interpolation or approximation we want over each element.

If for example, we are interested in information based on the
derivative at the nodes, then a linear interpolation will not be
appropriate for the problem.

—| Exact solution

u(x) ‘ Linear interpolation solution

ua@)
‘ u(b)

FINITE ELEMENT FORMULATIONS

The variation of the unknown function over an element may
be written in global coordinates as:

U, =C, +C,X

Matching the values of the function at the endnodes of each
element require u,, to be:

Uy =C +C,X;, = U,

Uy =C  +C Xy =Ujy

i+
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FINITE ELEMENT FORMULATIONS

Solving for ¢, and ¢, results in the following equation:

X, —X X—X;
U, —ui[ - J+ui+1[ : j
Xi —X; Xia =X

u,=Nu, +N,_u,

i+17+1

X, —X X — X,
where: N, =—1 — N, =—"

Xj = X; X

i+ i i1

1-D Boundary Value Problems - Linear Elements - Part 2

FINITE ELEMENT FORMULATIONS

N_Xi+1_x N = X—X;
i~ X X i1 X X
i1 N i1 N
N,
! Nul
1 1
L 4 A4 » v hd
X, X1 X; Xii1
4 N, +N, =1
N N
X, X

FINITE ELEMENT FORMULATIONS

The derivative of u may be computed as:

u'—u(_l ]+u [1 J
e — Y i+l
Xi1 —X; Xi —X;

r_ ’ '
u, =N/u,+N/,u

i+1 7+l

N, =—— N,  =—

i i+1
i+1 i i+1 i

FINITE ELEMENT FORMULATIONS

1 1
N’/ - N’Hl =
Xi —X; Xi —X;
A A,
N1 =1
i = 1
i Ky .
X; X
14

FINITE ELEMENT FORMULATIONS

In matrix form we may write the variation of u and u’over an
element as:

u,=N"u, u, =N"u,

where the vectors N, N’, and u,, are:

N, ! u,
) we] o
Ni+1 Ni'+1 ui+1

The vector N is often called the elemental interpolation
vector and u, is called the elemental displacement
vector.

FINITE ELEMENT FORMULATIONS

It is often more convenient to express the interpolation
functions in terms of an elemental coordinate system ¢.

For example, the linear interpolation functions may be
rewritten in £ as:

Nr
Ny
! N =1-¢ 1 N, =¢
. . >
£=0 £=1 £=0 =1
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FINITE ELEMENT FORMULATIONS FINITE ELEMENT FORMULATIONS
These elemental interpolation functions are often called Element Formulation - Let's first look at a variational
shape functions because they determine the shape of the approach to the Sturm-Liouville problem.
unknown function over each element.
Recall the energy functional is:
The derivative shape functions are:
u 2
A A ) Z(u)= J- ()7(7 uf |dx + ——— au(a)’ M + Au(a) + Bu(b)
e N 2 2
) Gk 3L o« ., Using the concept of the element as we have discussed
¢=0 e=1 previously, we may approximate the functional by replacing
the continuous function u with a series of connected
7 N —— elements.

FINITE ELEMENT FORMULATIONS FINITE ELEMENT FORMULATIONS
Element Formulation - Therefore the energy functional may Element Formulation - The approximation of the energy
be approximated by: functional may be written in the following form:
2
X1 Z +2 u?  puy.?
Z(u) = Z j —uf |dx Z(u)_z[ﬂezqe_zfe}razl Jrﬂ%_,qul_sulv+1
e
N au(za) ﬂu( ) + Au(a) + Bu(b) where the integrals Z,,., Z,,, and Z,, are defined as:
This type of approximation is possible since one of the Z = Il u'p(x)u’ dx Z = Il uq(x)u dx
fundamental properties of an integral is: e oy
Xy b X1
Idx 'fdx+de+.[dx+ .+ '|.dx+.fdx Zfezjuf(x)dx
Xy X3 Xn-1 XN X;

FINITE ELEMENT FORMULATIONS FINITE ELEMENT FORMULATIONS

Element Formulation - Each of these integrals is evaluated

Element Formulation - Differentiating x with respect to &
over each element. gives:
To transform the above integral into element coordinates &
the differential operator dx must be replaced by the = E dg = E[(l_ g)xi + e'EXM] dg = (Xm - X )d§
appropriate transformation between x and &
The global coordinate x may be written as: dx=1,d¢ I, =the length of the element
%, =N'x, =(N, N, )| _ gl X~ X
e A X, =X +E(Xy—X)=X+&l, = &= .
i+l e
(l SE)X +§X:+1 =X; +§(Xi+1_xi)

du _duds dud(x-x) duf1
dx dédx dédx| I, ) deld,

e
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FINITE ELEMENT FORMULATIONS

Element Formulation - Substituting the coordinate trans-
formation for x in the integrals Z,,,, Z,,, and Z,, result in:

1

Z, Ju p(xu' I, d&

= j[uq(x)u I,d&

z, - j uf(x)l, d&

Now we replace the function u and it's derivative u’ with the
linear elemental approximation using the shape functions in
the elemental coordinate & For example, consider the
integral Z

1_[uTN p(X)NTu, I dé

1-D Boundary Value Problems - Linear Elements - Part 2

FINITE ELEMENT FORMULATIONS

Element Formulation - Since the vectors u, and u," are not
functions of &, then these terms may be placed outside the
integral. The resulting form of the integral Z,,, is

Z, ~u [ ij(x INT 1, d;’j = ulp.u,

eO

where p, is defined as:

1 N DOON'
po = [NPOON™ dg
0

e

FINITE ELEMENT FORMULATIONS

Element Formulation - The integrals Z,, and Z,, may be
written in a similar manner:

1
qu zU: [INC’(X)NT le dgjue = ulQeue
0

1
d. = [NgOON" [,d¢
0

~ul [ij(x)Ie dcf] = ulf,

1

= ij(x)/edg

0

FINITE ELEMENT FORMULATIONS

Element Formulation - Let's examine in detail the integrals
Per G, and f,. Consider the integral p:

1 , T 1t N; "N
pe:Tij(x)N d¢é = I{N }p(X)<N/ N..,)dg

l i+l

= j{ }p(x) 1)d¢ X=X +¢&l,

e 0

X 1 -1
:%Jp<x;+§/e){_l Jdr:

FINITE ELEMENT FORMULATIONS

Element Formulation - Let’s turn our attention to the g
integrals.

1 1N
q. = J NGO)N' /,d¢é = J{N’} (N Noy)lod&

i+l

j{ }q(x)l £ &), x=x+¢l,

j;q(x + £, )l: (1_525) 5(2 f)}ldf

FINITE ELEMENT FORMULATIONS

Element Formulation - Now let us consider the f, integrals:

0

- {tf}f(x, +£1,)1,d¢

:ij(x)lsdf = j{l\ll\l }f(x)/edcf
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1-D Boundary Value Problems - Linear Elements - Part 2

FINITE ELEMENT FORMULATIONS

Assembly - The functional Z(u), through the discretization
and interpolation procedures has been converted into an

approximate function Z(u,, u,, u,, . . ., uy,,), which may be
written as:
Yu. 'k u
Z@huy%pmumgzg—%;ii—Zugg

Buy.s” | auy’
+—-+——-Bu,,-Au
2 2 N+1 1
where k. =p, + g,. Consider the k, term from the first

element. On an element level, the term u_ Tk, u, has the
form:

ulk.u, = (u, uz>{(kn)1 (klz)l}{ul}

(k21)1 (k22 )1 Us

FINITE ELEMENT FORMULATIONS

Assembly - Substituting this element “stiffness” matrix into
the global system would result in something like this:

o
<

(), (k)

ulk.u, =

eftete

Uy :uGTkGluG
0 0 0 0 OflUnu

The above equation is intended to show how each element
contributes to the global system.

FINITE ELEMENT FORMULATIONS

Assembly - In a similar manner, the contribution of the
forcing function f from the first element may be written as:

u't, = (u, uz>{((2))1}

The global contribution of the first element is:

T 0
ulfo=[u, u, Uy . Uy, =ulfe,

FINITE ELEMENT FORMULATIONS

Assembly - In a global sense the linear approximation for the
energy functional may be written as:
T
us Kgu
__G G- G T
UN+1) - 2 —Ug FG

Fs= fs+btg

Z(u, u, uy ..

Ke= kg +BTg

@ 00 0 A
000 0 0
BT.=/0 0 0 0 bt, =40
000  p B

FINITE ELEMENT FORMULATIONS
Assembly - Recall the energy functional Z(u) has the form:

Z(uruz’usv“ruNu)

and has a stationary value that is obtained by requiring
each partial derivative to vanish:

éé:O i=12,..,N+1
ou,
K
Ezozi w_u;,:e N KGUG:FG
Oug Oug 2

We have converted the original functional into a function of
the nodal unknowns and then required the functional to be
stationary with respect to each node using the Ritz method.

FINITE ELEMENT FORMULATIONS

Constraints - Essential or forced boundary conditions may
be inserted into the system equations by simply rewriting
the appropriate equation corresponding to the variable
where the condition is prescribed.

For example, the global system “stiffness” matrix constrained
by the boundary condition u(x,) = C is:

1 0 0 - 0 u, c
K21 K22 K23 K2,N+1 u, Fz
Ka Ky Ky KB,N+1 u, (=1 F

KN+L1 KN+12 KN+L3 KN+LN+1 uN+l FN+1
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FINITE ELEMENT FORMULATIONS

Constraints - If C is zero then the first column in the
“stiffness” matrix may also be replace by zeros.

However, for non-zero values of C we cannot replace the
stiffness components in the first column.

The unconstrained system equations were originally
represented by a symmetric stiffness matrix.

With boundary conditions accounted for, the stiffness matrix
has become unsymmetrical.

1-D Boundary Value Problems - Linear Elements - Part 2

FINITE ELEMENT FORMULATIONS

Constraints - To symmetrize the equations the terms in
corresponding column (in this case the first column), the
terms are multiplied by the value of the boundary condition
and moved to the right-hand side of the equations.

The resulting symmetric set of equations is:

1 0 0 0 u, C

0 K22 K23 K2,N+1 u, Fz - K21C
0 K32 K33 K3,N+1 Us o= F3 - K31C
0 KN+12 KN+13 o KN+LN+1 Uy FN+1 - KN+L1C

FINITE ELEMENT FORMULATIONS
Solution - The equations are ready to be solved.

Since we have spent some energy symmetrizing the global
equations, we should use an equation solver that uses a
symmetric storage algorithm.

Computation of Derived Variables - For the Sturm-Liouville
problem we have been discussing, the quantity u'is not
solved for directly.

FINITE ELEMENT FORMULATIONS

Computation of Derived Variables - Since we used a linear
interpolation in the variational formulation we can calculate
an approximate value of u’ the linear elemental interpolation
functions:

Notice that since linear interpolation function were employed,
the derivative is constant over each element:

//' Distribution of u
Approximation of u’

u(b)

u(x)

u(a)

FINITE ELEMENT FORMULATIONS
Galerkin Finite Element Models

The steps involved in generating a FEM model using
variational techniques follows the same procedure as we
used in our discussion of the spring-mass system:

Discretization

Interpolation

Elemental Description or Formulation
Assembly

Constraints

Solution

Computation of Derived Variables

N o g roDNPRE

FINITE ELEMENT FORMULATIONS

Discretization - The domain is broken up into a series of
subintervals:

u(x)

S elements

/ \ / \ )
X =a X X3 X, t Xn Xy, =b

The points that separate the subintervals are called nodes and
the subdomains between the nodes are called elements.

The entire discretization is often called a mesh. Later we will
discuss how the spacing of the mesh may effect the solution.
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FINITE ELEMENT FORMULATIONS

Interpolation - At this point we have to decide what type of
interpolation or approximation we want over each element.

In past discussions of variational model we used a linear
element.

An element of this type assumes a linear variation of the
function over the element.

For a Galerkin FEM model we will reexamine the concept of
interpolation over an element.

1-D Boundary Value Problems - Linear Elements - Part 2

FINITE ELEMENT FORMULATIONS

Interpolation - In developing a Galerkin FEM model, the
solution is represented in the form of a set of admissible
functions:

where each of the function n/(x) is composed of parts of the
adjacent interpolation functions N(x).

The functions n(x) may be called the basis functions for the
piecewise linear approximation over the interval [ a, b ].

FINITE ELEMENT FORMULATIONS

Interpolation - In developing a Galerkin FEM model, the
solution was represented in the form of a set of admissible
functions:

n

n

ny

FINITE ELEMENT FORMULATIONS

Element Formulation - Let’s look at a Galerkin approach to
the Sturm-Liouville problem.

Recall the general form of the MWR model of the Sturm-
Liouville equation:

ji(v’pu’ —vqu)dx + av(a)u(a) + fv(b)u(b)

= jz(vf)dx + Av(a) + Bv(b)

FINITE ELEMENT FORMULATIONS

Element Formulation - Substituting our approximation of the
function u into the above expression from the weighted
residual or the error statement:

E,.(U)= Jq(v’p%u,n[ - quzﬂu,n, ] dx + av(a)u(a) + pv(b)u(b)

- .T(vf) dx — Av(a)— Bv(b) =0

a

The Galerkin MWR model requires that the sum of the
residual Ey,, be zero.

FINITE ELEMENT FORMULATIONS

Element Formulation - If we take the weighting functions v (x)
as the basis function then the MWR statement becomes:

i

N+1| b
Z{I(n;pn; - nkqni)uidx:| +aU;6 + BUy Oy

i La

(nf)dx + Ad,, + By,

D —

where g; is the Knonecker delta function given as:

0 i#j
5:] = ; j
1 i=j
which implies that ¢,,,, term occurs only during the N+1
equation and &, during the first equation.
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FINITE ELEMENT FORMULATIONS

Element Formulation - The approximation equations may be
written in matrix form as:

SAU =b, k=12 .. N+1

- Au=b
where the terms A,; and b, are defined as:

’ ’
Ag (nkpni -nan, )uidx + QU6 + PUy O

Il
DT g —

Ksy
]

(M F)dX+ Ay +B Gy,

1-D Boundary Value Problems - Linear Elements - Part 2

FINITE ELEMENT FORMULATIONS

Element Formulation - This formulation produces a set of
N+1 linear equations in N+1 unknowns.

For the k" equation, the basis functions n, and n’, supply
what we will call local support.

This means the basis function n, and n’, are nonzero in a
local neighborhood of the node at x,

8/16

FINITE ELEMENT FORMULATIONS

Element Formulation - Therefore, the k" equation
corresponding to the node at x, reduces to:

Xgs1 X1

z _I.(ann;_nkqni)dX u, = _[(nkf)dx

Xk-1 X1

Let's look a little closer at the equation associated with the it
node:

Xics1 Xis1
U, J (mpry_ —n,gn,_,)dx +u, J (nypny —n,qn, )dx
Xk-1 Xg-1

X1 X1

Tl I (MpNiy =N any.,; ) dx = I (n.f)adx

X1 X1

FINITE ELEMENT FORMULATIONS

Element Formulation

XT ax

Xg-1

Notice that n,_, is zero over the interval [x,, x,,, ] and n,,, is
zero over the interval [ x,._;, x, 1.

FINITE ELEMENT FORMULATIONS

Element Formulation - Since n,,, and n’,,, are zero over the
interval [ x,_,, x, ] and n,_; and n’,_, are zero over the interval
[X4s X471 then the above equation becomes:

X X1
’ r ’ r
u,, I (o, —neqn,_y)dx +u, I (nypn, —n.qn,)dx

Xk-1 X1

Xki1 X1

Tl J (npni, —nany,;)dx = J (n,f)dx

X X1

FINITE ELEMENT FORMULATIONS

Element Formulation

My, n, Ny

XT ax

Xg-1

Do these functions look familiar?
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FINITE ELEMENT FORMULATIONS

Element Formulation - In order to compare this formulation
with the Ritz approach we discussed previously, let's write
out a set of equations for N+1 = 3 as:

X

[Fudxu, +[F,oxu, sau, = [(nfux +A
: !

if(nzf)dx '+j (n,f)dx

a

TledXUJ +X'szzdxu2' +fl—‘22dxu2 +fl—‘23dxu3

5 5 [
J' Fy, dx u, +‘[ Fupdxu, +pu, = B »+j' (nsf Yax

— ! ’
Fy=n";pn’; + nan,

1-D Boundary Value Problems - Linear Elements - Part 2

FINITE ELEMENT FORMULATIONS

PROBLEM #11 - Complete the verification that the equations
of the Galerkin approach coincide with the equations
derived from the Ritz approach.

Hint: First write the Galerkin method in elemental
coordinates & and then determine if the elemental stiffness
components are comparable and if the terms associated
with the function f(x) are identical.

Numerical Integration

Before we attempt to solve some problem using the Ritz or
Galerkin FEM formulations, we need to discuss how to
evaluate integrals of the form:

Izjf(g)dg

The basic idea behind any approximate integrations or
quadrature method is to replace the actual function with a
polynomial that accurately estimates the behavior of the
integrand.

The form of the approximate functions is such that their exact
integration may be easily computed.

Numerical Integration
Trapezoidal Rule - In this method the function f{(¢) is replace

by a series of connected linear functions F(&). The integral
may be estimated as:

N
)
1

where Fis a linear function over the interval [&, &, .
Computing the area of the trapezoidal region under the line
F over each subinterval results in:

=)+ A

TF(;)dg

i

2 hi =&n—¢

Numerical Integration

Trapezoidal Rule - If all the subintervals are assumed to be
the same size, then the integral may be written as:

I:%(F(§1)+2§ F(;)+F(§N)j

& & Eva Sy X

Numerical Integration

Simpson’s Rule - In this method the function f(¢&) is replace
by a series of connected quadratic functions F(&).

The quadratic function is defined over two subintervals of
length 2h,

The approximated quadratic curve may be integrated directly
over both subintervals.

The resulting value of the integral is:

13 (F(5.)+4F(5) < F(6.) %

h = §i+1 — gi—l

! 2

9/16
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Numerical Integration

Simpson’s Rule - If all the subintervals are assumed to be
the same size, then the integral may be written as:

h N-1 -2
1=8F@)ea £ Fe)v2 B Fe)er(a)
i=2,46... i=35,7...
This formula is often called Simpson’s 1/3 Rule.
F(¢) F&) F(&us)

1-D Boundary Value Problems - Linear Elements - Part 2

Numerical Integration

Gauss-Legendre Quadrature - In this method, a series of
specialized points and weights are developed to evaluate
the integral.

We will briefly discuss how these points and weights are
determined.

The general form of the quadrature is:

Numerical Integration

Gauss-Legendre Quadrature - A general integral:

I:TF(f)dgE

may be converted into the Gaussian integration space
[-1, 1] by the following transformation:

b+a (b-a)u
§ = 4+~ 7
2 2
Therefore the integral has the form:

I:JiF[b+a+(b—a)u](b—a)du

2 2 2

b-a
dé=——du
d 2

Numerical Integration

Gauss-Legendre Quadrature - In both the Ritz and Galerkin
formulations, integrals of the form were developed:

F(&)de

I=

ot—nr

therefore the Gaussian quadrature form is:

I_j-lF[b+a+(b—a)uj(b—a)du

2 2 2

Numerical Integration

Gauss-Legendre Quadrature - Let's examine how the points
and weights for Gaussian quadrature are developed.
Assume a one-point method, therefore N = 1:

The quadrature point u, and weight w; are determined such
that any linear function of u may be integrated exactly.

Numerical Integration

Gauss-Legendre Quadrature - We can accomplish this task
by solving the following two equations for u, and w;:

w,=2
u, =0

Thus the one-point Gaussian quadrature takes the form:

1
l=_|‘ldu=2=W1F(u1)=w1
O

1
1= Iudu:O =wF(u) =wu,
21

1= jF(u) du = 2F(0)

10/16
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1-D Boundary Value Problems - Linear Elements - Part 2

Numerical Integration

Gauss-Legendre Quadrature - To determine the points and
weights for a two-point Gaussian quadrature, N = 2, the
following equations should be solved:

1

F=1 _[ldu:2:wlF(u1)+w2F(u2):w1+w2
Y
1

F=u _[u du =0 = w,F (u,)+w,F (u,) = wu, +w,u,
1
T 2

F=u’ juz du:g = w,F (u,)+w,F (u,) = wuf +w,u?
e
1

F=u’ J'u3 du =0 = w,F (u,)+w,F (u,) = wu; +w,u;
21

Numerical Integration

Gauss-Legendre Quadrature - Solving this set of equations
gives:

w,=w, =1 u=—F7 u,=—

Thus the two-point Gaussian quadrature takes the form:

lzj'lF(u)du = F(_%jﬂz[%]

Therefore, a two-point Gaussian quadrature formula will
exactly integrate up to a third-order polynomial.

11/16

Numerical Integration

Gauss-Legendre Quadrature - This type of analysis may be
continued to find points and weights for higher-order
integrations.

Gauss-Legendre quadrature has the property that an Nt
order approximation integrates exactly a polynomial of
degree 2N-1 or less.

Order N Points u; Weights w;
T 0.000000000 200000000
2 £0.577350269 1,00000000
3 0.000000000 0.88388889

+0.774596669 0.55555556
4 £0.339981044 065214515
+0.861136312 034785485
5 0.000000000 0568388889
+0.538469310 0478628670
£0.906179845 0.236926885
6 £0.238610186 0467913934

£0.661209386 0.360761573
40932469514 0.171324492

Numerical Integration

PROBLEM #12 - To compare and contrast the different
integration methods we have discussed, evaluate the
following integral:

3 X @i
e’ sin(x
I= _[7(2 ) dx
. 1+x
by: 1) trapezoidal rule with one, two, and four intervals;
2) Simpson’s rule using two and four intervals;
3) Gaussian quadrature for N=1to 6.

FINITE ELEMENT FORMULATIONS

Example - Consider the problem of the axial deformation of a
prismatic bar we worked previously.

X E =29,000ksi
u(x) Qx)=Q, [17] A=1in?
,,,,,,,,,,,,,,,,,, > Q, =10kips/in.
Qx) } X
10ft.

The boundary value problem for this case is:

(AEu) +Q(x)=0 0<x<L
B u(0)=0
the boundary conditions are:
AEu’(L) =0

FINITE ELEMENT FORMULATIONS

Example - The Sturm-Liouville form of this equation requires
thatp =AE, g =0,and A=B = o= = 0. The corresponding
functional is: i )

AE (U
Z(u) :J. %—Q(x)u dx
0

Discretization - The domain will be divided into four
elements.

2.5t »L—z.sn —‘«-z.sn —‘«-z.sn»‘
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1-D Boundary Value Problems - Linear Elements - Part 2

12/16

FINITE ELEMENT FORMULATIONS

Interpolation - We will use linear elements. In developing a
Ritz FEM model, the solution was represented in the form of
a set of admissible functions:

x=N.x; + N, X,

u= Nr'ur' + N u; i+17+1

i+170+1

Element Formulation - The approximation of the energy
functional may be written in the following form:

Z(u)=3 (ZZPE —Zfe]dx

1 1
z,= Ii [uAEw as Z,=[Q(x +&l,)u 1,d¢
0 0

e

FINITE ELEMENT FORMULATIONS
Element Formulation - Now we replace u’ with the linear

elemental approximation using the shape functions in the
elemental coordinate &.

For example, consider the integral Z,,,:
1 1

Z, ~u; [/JN’AEN’T dafjue = ulp.u,
e 0

1% 11 -1
==|NAENTd¢ == AEd
P. ,! & ,!L J ¢

e e

FINITE ELEMENT FORMULATIONS

Element Formulation - Now we replace u’ with the linear
elemental approximation using the shape functions in the
elemental coordinate ¢&.

For example, consider the integral Z,:
1
z,ezu:[jwom/sd;jue -
0

f, = [NQ(x)/,0¢ = j{lj}o(x, +&l,)1,dé

FINITE ELEMENT FORMULATIONS

Assembly - The functional Z(u), through the discretization
and interpolation procedures has been converted into an

approximate function Z(u,, u,, U, . . ., uy,,), which may be
written as:
4AE\Xu. "k u T
Z(Uy, Uy, U, o U ) =(Tj% ->u,'f,

oz _
Oug

0o -

where:

K= Kg

where k, = p,

FINITE ELEMENT FORMULATIONS

Assembly - Consider the k, term for each element in the
system.

For element #1: x;=0 For element #2: x; = 2.5 ft.
1 -1](u [ 1 -1](u
Ky, = ! k,u, = :
-1 1)y, -1 1]y,

For element #3 : x; = 5 ft. For element #4 : x,= 7.5 ft.

1 -1)(u (1 -1]
KU, = ¢ k,u, = e
-1 1y, -1 1]|Us

FINITE ELEMENT FORMULATIONS

Assembly - The right-hand side terms involving the loading
function for each element are:

Qole
f ¢ X, + &, BT (-3x, -1, +3L)
QT e g
oL ¢ Qle (35 21, +31)
6L ! e

for I, = L/4 the element integrals become:

(13 ~12x)
96

D (101 -12x))
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FINITE ELEMENT FORMULATIONS

Assembly - Consider the f, term for each element in the
system.

For element #1: x,=0 For element #2: x;= 2.5 ft.
119k g QL
£ = 96 £ = 96
17 2=
1 Q,L 7%
96 96
For element #3 : x;=5 ft. For element #4 : x;= 7.5 ft.
5% 2%
- 96 f = 96
3= 4=
4Ok QL
96 96

1-D Boundary Value Problems - Linear Elements - Part 2

FINITE ELEMENT FORMULATIONS

Assembly - Compiling these terms into the global system
equations gives:

Kglg =Fs
(1 -1.0.0 0]fy
-1 [2] 10,0, o|u,
=#0—1 2 -1 0Ru; ;=
0 O0|-1]| 2| -1f|u,
10 0 0|-1 1f|us

Element 4

FINITE ELEMENT FORMULATIONS

Constraints - Essential or forced boundary conditions may
be inserted into the system equations by simply rewriting
the appropriate equation corresponding to the variable
where the condition is prescribed.

The global system “stiffness” matrix constrained by the
boundary condition u(0) = 0 is:

4AE| 0 QL 18
i uy b =—2=112
L 96
u4
Uy 1

FINITE ELEMENT FORMULATIONS
Solution - The equations are ready to be solved.
QL2

QL
u =0 u, =37 u, =56
384AE 384AE

u, = u. =
¢ 384AE ° 384AE

FEM Solution - Substituting the numerical values for Q,, L,
A, and E into the displacement expressions gives:

QL 6a_ QL

u, =0 u, =0.4784 in. u; =0.7241in.

u, =0.8147 in. u;, =0.8276 in.

FINITE ELEMENT FORMULATIONS

Solution - The exact solution may be determined from the
following expression:

X X

AEu(x) = -| fQ(x)dx'dx - —T TQD [1—%de'dx

el -3t 4]

EFEM Solution - Substituting the numerical values for Q,, L,
A, and E into the displacement expressions gives:

u, =0 u, =0.4784 in. u; =0.7241in.

u, =0.8147 in. u; =0.8276 in.

FINITE ELEMENT FORMULATIONS
Exact Solution - The exact solution may be determined from
the following expression:

u, =0 u, =0.4784 in. u, =0.7241in.

u, =0.8147 in. u, =0.8276 in.

FEM Solution - Substituting the numerical values for Q,, L,
A, and E into the displacement expressions gives:

u, =0 u, =0.4784 in. u; =0.7241in.

u, =0.8147 in. u; =0.8276 in.
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FINITE ELEMENT FORMULATIONS

EEM Solution - Comparison of 4 element FEM formulation
with exact solution

0.20

Exact Solution 4
0.15

a 010
4 element FEM

0.05 2
u(x)=a [%J

0.00

=)
o
=3
e
o
~
=3
w
1)
=
o |
o
o
>
=3
3
o
o
o
©
-
o

~|x

1-D Boundary Value Problems - Linear Elements - Part 2

FINITE ELEMENT FORMULATIONS

Computation of Derived Variables - For the Sturm-Liouville
problem we have been discussing, the quantity v’ is not
solved for directly.

Since we used a linear interpolation in the variational
formulation we can calculate an approximate value of v’
using the linear elemental interpolation functions:

u,, —U;
uel — 1+ I
/e
FEM Solution - Substituting the numerical values for Q,, L,
A, and E into the displacement expressions gives:
37 QL v 19 QL v QL QL

u' = = =6 u' =
eloment1 96AE element2 96AE dlments = 0 ge e ryy=

FINITE ELEMENT FORMULATIONS

Computation of Derived Variables - The exact solution for
the first derivative is:

AEU(X) = —To(x)dx'dx - —TQO (1— %j dx"dx
1 x 2 x) 1
=& HJ ‘(LH

EFEM Solution - Substituting the numerical values for Q,, L,
A, and E into the displacement expressions gives:

U sioments = 37 ggf:‘,:— U gtoment> =19 ggoALE U'ctoments = 6;;#; U'ctoments = %

FINITE ELEMENT FORMULATIONS

Computation of Derived Variables - The exact solution for
the first derivative is:

v, - 48 QL u, - QL v, - QL
96AE 96AE 96AE
u,=3 QL u',=0
96AE

FEM Solution - Substituting the numerical values for Q,, L,
A, and E into the displacement expressions gives:

' gamonts = 37 QCG)OALE U gomentz =19 9(6);LE U goments =6 9§;LE L — gigquE

FINITE ELEMENT FORMULATIONS

FEM Solution - Comparison of 4 element FEM formulation
with exact solution

ool \ / 4 element FEM
P ] \\
u'(x
0.10 4 ( ) {AE]
Exact Solution

000 010 020 030 040 050 060 070 080 090 100

FINITE ELEMENT FORMULATIONS

Example - Work the preceding problem again using eight
equally-spaced elements.

X E =29,000ksi
() Q(X):Qo(lfzj A=1in?
,,,,,,,,,,,,,,,,,, > Q, =10kips/in.
9(x) | x
10ft.
The boundary value problem for this case is:
(AEu')' +Q(x)=0 0<x<L

u(0)=0

the boundary conditions are:
AEU (L) =0
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FINITE ELEMENT FORMULATIONS

Example - Work the preceding problem again using eight
equally-spaced elements.

Discretization - The domain will be divided into eight
elements.

1-D Boundary Value Problems - Linear Elements - Part 2

FINITE ELEMENT FORMULATIONS

Example - Applying the values for the geometry, material
properties, and loading given in this problem and the
boundary condition results in:

Ao O 0 0 U
0'2 10 0 0 0 0 0|y 42
0i-1 2 -1 0 0 0 0 Of|u 36
SAE 910 -1 2-10 0 0 0fy, oL |®
Z=loro 041 21 0 0 0y l=-124
L 384
510 0 0 -1 2 -1 0 Of|y, 18
i 00 0 0-12 -1 0y 12
)10 0 0 0 0 -1 2 -1f|y, 6
0i0 0 0 0 0 0 -1 1|y 1

Lk
8
FINITE ELEMENT FORMULATIONS
Example - The solution of these equations is:
I? I?
u, =0 u3:296007 u5:448007
3,072AE 3,072AE
2 2
u, =504L Uy =512L
3,072AE 3,072AE

Example - Substituting the numerical values for Q,, L, A and
E results in:

u, =0 u, =0.4784 in. u; =0.7241in.

u, =0.8147 in. u, =0.8276 in.

FINITE ELEMENT FORMULATIONS

FEM Solution - Comparison of 8 element FEM formulation
with exact solution

0.20

0.15 Exact Solution '\
0.10
“ \ 8 element FEM

0.0 0.1 02 03 0.4 0.

2
o
>
=)
3
o |
o
o
©
-
o

FINITE ELEMENT FORMULATIONS

Computation of Derived Variables - The exact solution for
the first derivative is:

u', =169 QL u'y =91 QL u'y =37 QL u', =7 QL
384AE 384AE 384AE 384AE

FEM Solution - Substituting the numerical values for Q,, L,
A, and E into the displacement expressions gives:

u; =0.01821 u, =0.00981 ug =0.00399 u; =0.00075

FINITE ELEMENT FORMULATIONS

FEM Solution - Comparison of 8 element FEM formulation
with exact solution

! 8 element FEM
0.30
B

010 Exact Solution I'/

0.00
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

15/16
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FINITE ELEMENT FORMULATIONS
PROBLEM #13 - Correct the "bleeped" version of ODE2 -
linear second-order differential equation solver.

Use the ODE2 program to solve following axial deformation

of the prismatic bar: E n d Of

£ =29,000ksi
Q(X):Qo[lfzj A=1in?

,,,,,,,,,,,,,,,,,, Chapter 2b

Q) \ X






