
Before you decide to drop the course and curse me for 
convincing or making you take this class, let me tell you that 
up till now we have not really discussed finite element 
methods. 

The basic mathematics we have previously discussed 
provides us with a basis for understanding the inner 
workings of FEM techniques. The two basic approaches 
are:

FINITE ELEMENT FORMULATIONS

1. The Ritz method - utilizes the energy or functional 
associated with the differential equation as the base for 
the finite element formulation

2. The MWR method - approximates the differential equation 
directly as the base for the finite element formulation

Variational Finite Element Models

The steps involved in generating a FEM model using 
variational techniques follows the same procedure as we 
used in our discussion of the spring-mass system:

FINITE ELEMENT FORMULATIONS

1. Discretization

2. Interpolation

3. Elemental Description or Formulation

4. Assembly

5. Constraints

6. Solution

7. Computation of Derived Variables

( )u x

x

Discretization - The domain is broken up into a series of 
subintervals:

FINITE ELEMENT FORMULATIONS

The points that separate the subintervals are called nodes and 
the subdomains between the nodes are called elements. 

The entire discretization is often called a mesh. Later we will 
discuss how the spacing of the mesh may effect the solution.

1x a 2x · · ·

nodes

4x3x Nx 1Nx b 

elements

Interpolation - At this point we have to decide what type of 
interpolation or approximation we want over each element. 

In past discussions of the axial deformation problem we 
routinely used a linear element. 

An element of this type assumes an linear variation of the 
function over the element. 

Therefore the function is represented as a series of linear 
lines that are continuous at the nodes.

One obvious problem with a linear interpolation is that the 
derivative of the approximation is discontinuous at each 
node.  

FINITE ELEMENT FORMULATIONS

Interpolation - At this point we have to decide what type of 
interpolation or approximation we want over each element. 

FINITE ELEMENT FORMULATIONS

If for example, we are interested in information based on the 
derivative at the nodes, then a linear interpolation will not be 
appropriate for the problem.

( )u x

x

1x a 2x 4x3x Nx 1Nx b 

( )u a

( )u b

5x 6x

Exact solution

Linear interpolation solution

The variation of the unknown function over an element may 
be written in global coordinates as:

FINITE ELEMENT FORMULATIONS

Matching the values of the function at the endnodes of each 
element require ue to be:
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Solving for c1 and c2 results in the following equation:

FINITE ELEMENT FORMULATIONS

where:
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FINITE ELEMENT FORMULATIONS
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The derivative of u may be computed as:

FINITE ELEMENT FORMULATIONS

where:
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FINITE ELEMENT FORMULATIONS
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In matrix form we may write the variation of u and u’ over an 
element as:

FINITE ELEMENT FORMULATIONS

where the vectors N, N’, and ue are:

  e eu uT T
e eN u N u
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The vector N is often called the elemental interpolation 
vector and ue is called the elemental displacement 
vector. 

It is often more convenient to express the interpolation 
functions in terms of an elemental coordinate system . 

For example, the linear interpolation functions may be 
rewritten in  as:

FINITE ELEMENT FORMULATIONS
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These elemental interpolation functions are often called 
shape functions because they determine the shape of the 
unknown function over each element. 

The derivative shape functions are:

FINITE ELEMENT FORMULATIONS
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1
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Element Formulation - Let’s first look at a variational 
approach to the Sturm-Liouville problem. 

Recall the energy functional is:

FINITE ELEMENT FORMULATIONS
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Using the concept of the element as we have discussed 
previously, we may approximate the functional by replacing 
the continuous function u with a series of connected 
elements. 

Element Formulation - Therefore the energy functional may 
be approximated by:

FINITE ELEMENT FORMULATIONS

This type of approximation is possible since one of the 
fundamental properties of an integral is:
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Element Formulation - The approximation of the energy 
functional may be written in the following form:

FINITE ELEMENT FORMULATIONS

where the integrals Zpe, Zqe, and Zfe are defined as:
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Element Formulation - Each of these integrals is evaluated 
over each element. 

To transform the above integral into element coordinates 
the differential operator dx must be replaced by the 
appropriate transformation between x and . 

The global coordinate x may be written as:

FINITE ELEMENT FORMULATIONS
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Element Formulation - Differentiating x with respect to 
gives:

FINITE ELEMENT FORMULATIONS
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Element Formulation - Substituting the coordinate trans-
formation for x in the integrals Zpe, Zqe, and Zfe result in:

FINITE ELEMENT FORMULATIONS
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Now we replace the function u and it’s derivative u’ with the 

linear elemental approximation using the shape functions in 
the elemental coordinate . For example, consider the 
integral Zpe: 1
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Element Formulation - Since the vectors ue and ue
T are not 

functions of , then these terms may be placed outside the 
integral. The resulting form of the integral Zpe is:

FINITE ELEMENT FORMULATIONS

where pe is defined as:
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Element Formulation - The integrals Zqe and Zfe may be 
written in a similar manner:

FINITE ELEMENT FORMULATIONS
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Element Formulation - Let’s examine in detail the integrals 
pe, qe, and fe. Consider the integral pe:

FINITE ELEMENT FORMULATIONS
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Element Formulation - Let’s turn our attention to the qe
integrals. 

FINITE ELEMENT FORMULATIONS
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Element Formulation - Now let us consider the fe integrals:

FINITE ELEMENT FORMULATIONS
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Assembly - The functional Z(u), through the discretization 
and interpolation procedures has been converted into an 
approximate function Z(u1, u2, u3, . . . , uN+1), which may be 
written as:

FINITE ELEMENT FORMULATIONS

where ke = pe + qe. Consider the ke term from the first 
element. On an element level, the term ue

T ke ue has the 
form:
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Assembly - Substituting this element “stiffness” matrix into 
the global system would result in something like this:

FINITE ELEMENT FORMULATIONS

The above equation is intended to show how each element 
contributes to the global system. 
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Assembly - In a similar manner, the contribution of the 
forcing function f from the first element may be written as:

FINITE ELEMENT FORMULATIONS

The global contribution of the first element is:
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Assembly - In a global sense the linear approximation for the 
energy functional may be written as:

FINITE ELEMENT FORMULATIONS
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Assembly - Recall the energy functional Z(u) has the form:

FINITE ELEMENT FORMULATIONS
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and has a stationary value that is obtained by requiring
each partial derivative to vanish:
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We have converted the original functional into a function of 
the nodal unknowns and then required the functional to be 
stationary with respect to each node using the Ritz method.

Constraints - Essential or forced boundary conditions may 
be inserted into the system equations by simply rewriting 
the appropriate equation corresponding to the variable 
where the condition is prescribed. 

For example, the global system “stiffness” matrix constrained 
by the boundary condition u(x1) = C is:

FINITE ELEMENT FORMULATIONS
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Constraints - If C is zero then the first column in the 
“stiffness” matrix may also be replace by zeros. 

However, for non-zero values of C we cannot replace the 
stiffness components in the first column. 

The unconstrained system equations were originally 
represented by a symmetric stiffness matrix. 

With boundary conditions accounted for, the stiffness matrix 
has become unsymmetrical. 

FINITE ELEMENT FORMULATIONS

Constraints - To symmetrize the equations the terms in 
corresponding column (in this case the first column), the 
terms are multiplied by the value of the boundary condition 
and moved to the right-hand side of the equations.

The resulting symmetric set of equations is:

FINITE ELEMENT FORMULATIONS
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Solution - The equations are ready to be solved. 

Since we have spent some energy symmetrizing the global 
equations, we should use an equation solver that uses a 
symmetric storage algorithm.

FINITE ELEMENT FORMULATIONS

Computation of Derived Variables - For the Sturm-Liouville 
problem we have been discussing, the quantity u′ is not 
solved for directly.

FINITE ELEMENT FORMULATIONS

Computation of Derived Variables - Since we used a linear 
interpolation in the variational formulation we can calculate 
an approximate value of u’ the linear elemental interpolation 
functions: 
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Notice that since linear interpolation function were employed, 
the derivative is constant over each element:
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Distribution of  u

Approximation of u’

Galerkin Finite Element Models

The steps involved in generating a FEM model using 
variational techniques follows the same procedure as we 
used in our discussion of the spring-mass system:

FINITE ELEMENT FORMULATIONS

1. Discretization

2. Interpolation

3. Elemental Description or Formulation

4. Assembly

5. Constraints

6. Solution

7. Computation of Derived Variables

1x a 2x 4x · · ·
Nx 1Nx b 

( )u x

x

nodes

3x

elements

Discretization - The domain is broken up into a series of 
subintervals:

FINITE ELEMENT FORMULATIONS

The points that separate the subintervals are called nodes and 
the subdomains between the nodes are called elements. 

The entire discretization is often called a mesh. Later we will 
discuss how the spacing of the mesh may effect the solution.
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Interpolation - At this point we have to decide what type of 
interpolation or approximation we want over each element. 

In past discussions of variational model we used a linear 
element. 

An element of this type assumes a linear variation of the 
function over the element. 

For a Galerkin FEM model we will reexamine the concept of 
interpolation over an element. 

FINITE ELEMENT FORMULATIONS

Interpolation - In developing a Galerkin FEM model, the 
solution is represented in the form of a set of admissible 
functions:

FINITE ELEMENT FORMULATIONS
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where each of the function ni(x) is composed of parts of the 
adjacent interpolation functions Ni(x). 

The functions ni(x) may be called the basis functions for the 
piecewise linear approximation over the interval [ a, b ].

Interpolation - In developing a Galerkin FEM model, the 
solution was represented in the form of a set of admissible 
functions:

FINITE ELEMENT FORMULATIONS
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Element Formulation - Let’s look at a Galerkin approach to 
the Sturm-Liouville problem. 

Recall the general form of the MWR model of the Sturm-
Liouville equation:

FINITE ELEMENT FORMULATIONS
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Element Formulation - Substituting our approximation of the 
function u into the above expression from the weighted 
residual or the error statement:
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The Galerkin MWR model requires that the sum of the 
residual EN+1 be zero. 

Element Formulation - If we take the weighting functions  (x) 
as the basis function then the MWR statement becomes:

FINITE ELEMENT FORMULATIONS

where ij is the Knonecker delta function given as:
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which implies that kN+1 term occurs only during the N+1 
equation and k1 during the first equation. 
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Element Formulation - The approximation equations may be 
written in matrix form as: 

FINITE ELEMENT FORMULATIONS

where the terms Aki and bk are defined as:
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Element Formulation - This formulation produces a set of 
N+1 linear equations in N+1 unknowns. 

For the kth equation, the basis functions nk and n’k supply 
what we will call local support. 

This means the basis function nk and n’k are nonzero in a 
local neighborhood of the node at xk

FINITE ELEMENT FORMULATIONS

1x a 2x 3x 4x Nx 1Nx b · · · 1Nx 2Nx 

1n

2n

3n

1Nn 

Nn

1Nn 

Element Formulation - Therefore, the kth equation 
corresponding to the node at xk reduces to:

FINITE ELEMENT FORMULATIONS

Let’s look a little closer at the equation associated with the ith

node:
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Element Formulation

FINITE ELEMENT FORMULATIONS
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Notice that nk-1 is zero over the interval [xk, xk+1 ] and nk+1 is 
zero over the interval [ xk-1, xk ].

Element Formulation - Since nk+1 and n’k+1 are zero over the 
interval [ xk-1, xk ] and nk-1 and n’k-1 are zero over the interval 
[xk, xk+1 ] then the above equation becomes:

FINITE ELEMENT FORMULATIONS
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Element Formulation

FINITE ELEMENT FORMULATIONS
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Do these functions look familiar? 
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Element Formulation - In order to compare this formulation 
with the Ritz approach we discussed previously, let’s write 
out a set of equations for N+1 = 3 as:

FINITE ELEMENT FORMULATIONS
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PROBLEM #11 - Complete the verification that the equations 
of the Galerkin approach coincide with the equations 
derived from the Ritz approach. 

Hint: First write the Galerkin method in elemental 
coordinates  and then determine if the elemental stiffness 
components are comparable and if the terms associated 
with the function f(x) are identical.

FINITE ELEMENT FORMULATIONS

Before we attempt to solve some problem using the Ritz or 
Galerkin FEM formulations, we need to discuss how to 
evaluate integrals of the form:
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The basic idea behind any approximate integrations or 
quadrature method is to replace the actual function with a 
polynomial that accurately estimates the behavior of the 
integrand. 

The form of the approximate functions is such that their exact 
integration may be easily computed. 

Trapezoidal Rule - In this method the function f() is replace 
by a series of connected linear functions F(). The integral 
may be estimated as:

Numerical Integration
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1

1

i

i

N

F d

              1 1
1 2

N
i

i i i i i

h
F F h

Trapezoidal Rule - If all the subintervals are assumed to be 
the same size, then the integral may be written as:

Numerical Integration
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Simpson’s Rule - In this method the function f() is replace 
by a series of connected quadratic functions F(). 

The quadratic function is defined over two subintervals of 
length 2hi. 

The approximated quadratic curve may be integrated directly 
over both subintervals. 

The resulting value of the integral is:

Numerical Integration
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Simpson’s Rule - If all the subintervals are assumed to be 
the same size, then the integral may be written as:

Numerical Integration
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This formula is often called Simpson’s 1/3 Rule.
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Gauss-Legendre Quadrature - In this method, a series of 
specialized points and weights are developed to evaluate 
the integral. 

We will briefly discuss how these points and weights are 
determined. 

The general form of the quadrature is:

Numerical Integration
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Gauss-Legendre Quadrature - A general integral: 

Numerical Integration
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may be converted into the Gaussian integration space 
[ -1, 1 ] by the following transformation:
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Gauss-Legendre Quadrature - In both the Ritz and Galerkin 
formulations, integrals of the form were developed:

Numerical Integration

therefore the Gaussian quadrature form is:
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Gauss-Legendre Quadrature - Let’s examine how the points 
and weights for Gaussian quadrature are developed. 
Assume a one-point method, therefore N = 1:

Numerical Integration

The quadrature point u1 and weight w1 are determined such 
that any linear function of u may be integrated exactly. 

   


  
1

1 1
1

F u du w F u

Gauss-Legendre Quadrature - We can accomplish this task 
by solving the following two equations for u1 and w1:

Numerical Integration



  
1

1

( ) 2 (0)F u du F

Thus the one-point Gaussian quadrature takes the form:

 


    
1

1 1 1
1

1 2du w F u w

 


    
1

1 1 1 1
1

0u du w F u w u


 

1

1

2

0

w

u
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Gauss-Legendre Quadrature - To determine the points and 
weights for a two-point Gaussian quadrature, N = 2, the 
following equations should be solved:

Numerical Integration

   
1

1 1 2 2 1 2

1

1 1 2F du w F u w F u w w


     

   
1

1 1 2 2 1 1 2 2

1

0F u u du w F u w F u w u w u


     

   
1

2 2 2 2
1 1 2 2 1 1 2 2

1

2

3
F u u du w F u w F u w u w u



     

   
1

3 3 3 3
1 1 2 2 1 1 2 2

1

0F u u du w F u w F u w u w u


     

Gauss-Legendre Quadrature - Solving this set of equations 
gives: 

Numerical Integration

Thus the two-point Gaussian quadrature takes the form:

1 2 1 2

1 1
1

3 3
w w u u    

 


   
       

   
1

1

1 1

3 3
F u du F F

Therefore, a two-point Gaussian quadrature formula will 
exactly integrate up to a third-order polynomial. 

Gauss-Legendre Quadrature - This type of analysis may be 
continued to find points and weights for higher-order 
integrations. 

Gauss-Legendre quadrature has the property that an Nth

order approximation integrates exactly a polynomial of 
degree 2N-1 or less.

Numerical Integration

0.171324492±0.932469514

0.360761573±0.661209386

0.467913934±0.2386101866

0.236926885±0.906179845

0.478628670±0.538469310

0.5688888890.0000000005

0.34785485±0.861136312

0.65214515±0.3399810444

0.55555556±0.774596669

0.888888890.0000000003
1.00000000±0.5773502692
2.000000000.0000000001

Weights wiPoints uiOrder N

PROBLEM #12 - To compare and contrast the different 
integration methods we have discussed, evaluate the 
following integral:

Numerical Integration

 


3

2
1

sin( )

1

xe x
dx

x

by: 1) trapezoidal rule with one, two, and four intervals;
2) Simpson’s rule using two and four intervals; 
3) Gaussian quadrature for N = 1 to 6.

FINITE ELEMENT FORMULATIONS

Example - Consider the problem of the axial deformation of a 
prismatic bar we worked previously.

The boundary value problem for this case is:

    0 0AEu Q x x L     

the boundary conditions are:
 

 
0 0

0

u

AEu L

 


 

( )u x

x( )Q x

10 ft.

  0 1
x

Q x Q
L

   
 

29,000ksiE 
21 in.A 

0 10kips/in.Q 

FINITE ELEMENT FORMULATIONS

Example - The Sturm-Liouville form of this equation requires 
that p = AE, q = 0, and A = B =  =  = 0. The corresponding 
functional is:

Discretization - The domain will be divided into four 
elements.

   
2

0

( )
2

L AE u
Z u Q x u dx

 
  
 
 


( )u x

x

4e

L
l 

2 .5 f t 2 .5 f t 2 .5 f t 2 .5 f t

1 2 43 5
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Interpolation - We will use linear elements. In developing a 
Ritz FEM model, the solution was represented in the form of 
a set of admissible functions:

FINITE ELEMENT FORMULATIONS

1 1 1 1i i i i i i i iu N u N u x N x N x      

Element Formulation - The approximation of the energy 
functional may be written in the following form:

 
2
pe

fe
e

Z
Z u Z dx

 
  

 


 
1 1

0 0

1
pe fe i e e

e

Z u AEu d Z Q x l u l d
l

       

Element Formulation - Now we replace u’ with the linear 
elemental approximation using the shape functions in the 
elemental coordinate . 

For example, consider the integral Zpe:

FINITE ELEMENT FORMULATIONS

1

0

1
pe

e

Z AE d
l


 

   
 
T T T

e e e e eu N N u u p u

1

0

1

e

AE d
l

   T
ep N N

1

0

1 11

1 1e

AE d
l


 

   


Element Formulation - Now we replace u’ with the linear 
elemental approximation using the shape functions in the 
elemental coordinate . 

For example, consider the integral Zfe:

FINITE ELEMENT FORMULATIONS

1

0

( )fe eZ Q x l d
 

  
 
T T

e e e eu N u u f

1

0

( ) eQ x l d ef N
1

0

1
( )i e eQ x l l d


 


 

  
 


Assembly - The functional Z(u), through the discretization 
and interpolation procedures has been converted into an 
approximate function Z(u1, u2, u3, . . . , uN+1), which may be 
written as:

FINITE ELEMENT FORMULATIONS

where:

 1 2 3 1

4
, , , ... ,

2N

AE
Z u u u u

L

    
 

T
Te e e

e e

u k u
u f

0
Z


 Gu

e e

  G G G GK k F f

where ke = pe

 G G GK u F

Assembly - Consider the ke term for each element in the 
system. 

FINITE ELEMENT FORMULATIONS

1

2

1 1

1 1

u

u

   
      

1 1k u 2

3

1 1

1 1

u

u

   
      

2 2k u

3

4

1 1

1 1

u

u

   
      

3 3k u 4

5

1 1

1 1

u

u

   
      

4 4k u

For element #3 : xi = 5 ft. For element #4 : xi = 7.5 ft.

For element #1: xi = 0 For element #2: xi = 2.5 ft.

Assembly - The right-hand side terms involving the loading 
function for each element are:

FINITE ELEMENT FORMULATIONS

for le = L/4 the element integrals become:

1

0
0

1
1 i e

e

x l
Q l d

L

 



        

  
ef

 

 

e
i e

e
i e

Q l
x l L

L
Q l

x l L
L

0

0

3 3
6

3 2 3
6

       
   
  

 

 

i

i

Q
L x

Q
L x

0

0

11 12
96

10 12
96

     
 
  

ef
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Assembly - Consider the fe term for each element in the 
system. 

FINITE ELEMENT FORMULATIONS

0

0

11
96

10
96

Q L

Q L

 
    
 
  

1f

0

0

8
96

7
96

Q L

Q L

 
    
 
  

2f

0

0

5
96

4
96

Q L

Q L

 
    
 
  

3f

0

0

2
96

1
96

Q L

Q L

 
    
 
  

4f

For element #3 : xi = 5 ft. For element #4 : xi = 7.5 ft.

For element #1: xi = 0 For element #2: xi = 2.5 ft.

Assembly - Compiling these terms into the global system 
equations gives:

FINITE ELEMENT FORMULATIONS

1

2

0
3

4

5

1 1 0 0 0 11

1 2 1 0 0 18
4

0 1 2 1 0 12
96

0 0 1 2 1 6

0 0 0 1 1 1

u

u
Q LAE

u
L

u

u

     
                    

           
         

Element 1

Element 2

Element 3

Element 4

Element 1

G G GK u F

Element 2

Element 3

Element 4

Constraints - Essential or forced boundary conditions may 
be inserted into the system equations by simply rewriting 
the appropriate equation corresponding to the variable 
where the condition is prescribed. 

The global system “stiffness” matrix constrained by the 
boundary condition u(0) = 0 is:

FINITE ELEMENT FORMULATIONS

1

2

0
3

4

5

1 0 0 0 0 0

0 2 1 0 0 18
4

0 1 2 1 0 12
96

0 0 1 2 1 6

0 0 0 1 1 1

u

u
Q LAE

u
L

u

u

    
                   

           
         

Solution - The equations are ready to be solved.

FINITE ELEMENT FORMULATIONS

2 2
0 0

1 2 30 37 56
384 384

Q L Q L
u u u

AE AE
  

2 2
0 0

4 563 64
384 384

Q L Q L
u u

AE AE
 

1 2 30 0.4784 in. 0.7241 in.u u u  

4 50.8147 in. 0.8276 in.u u 

FEM Solution - Substituting the numerical values for Q0, L,
A, and E into the displacement expressions gives:

Solution - The exact solution may be determined from the
following expression:

FINITE ELEMENT FORMULATIONS

FEM Solution - Substituting the numerical values for Q0, L,
A, and E into the displacement expressions gives:

 
' '

0( ) ' 1 '
x x x x x

AEu x Q x dx dx Q dx dx
L

      
    

3 2
2

0

1 1 1

6 2 2

x x x
Q L

L L L

              
       

1 2 30 0.4784 in. 0.7241 in.u u u  

4 50.8147 in. 0.8276 in.u u 

Exact Solution - The exact solution may be determined from
the following expression:

FINITE ELEMENT FORMULATIONS

FEM Solution - Substituting the numerical values for Q0, L,
A, and E into the displacement expressions gives:

1 2 30 0.4784 in. 0.7241 in.u u u  

4 50.8147 in. 0.8276 in.u u 

1 2 30 0.4784 in. 0.7241 in.u u u  

4 50.8147 in. 0.8276 in.u u 
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FEM Solution - Comparison of 4 element FEM formulation 
with exact solution

FINITE ELEMENT FORMULATIONS

0.00

0.05

0.10

0.15

0.20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0



 
2

0Q L
u x

AE

 

  
 

4 element FEM

Exact Solution

x

L

Computation of Derived Variables - For the Sturm-Liouville 
problem we have been discussing, the quantity u’ is not 
solved for directly. 

Since we used a linear interpolation in the variational 
formulation we can calculate an approximate value of u’ 
using the linear elemental interpolation functions:

FINITE ELEMENT FORMULATIONS

1i i
e

e

u u
u

l
 

 

FEM Solution - Substituting the numerical values for Q0, L,
A, and E into the displacement expressions gives:

0 0 0 0
1 2 3 437 19 6

96 96 96 96element element element element

Q L Q L Q L Q L
u u u u

AE AE AE AE
       

Computation of Derived Variables - The exact solution for
the first derivative is:

FINITE ELEMENT FORMULATIONS

 
' '

0( ) ' 1 '
x x x

AEu x Q x dx dx Q dx dx
L

       
  

2
2

0

1 1

2 2

x x
Q L

L L

          
     

FEM Solution - Substituting the numerical values for Q0, L,
A, and E into the displacement expressions gives:

0 0 0 0
1 2 3 437 19 6

96 96 96 96element element element element

Q L Q L Q L Q L
u u u u

AE AE AE AE
       

Computation of Derived Variables - The exact solution for
the first derivative is:

FINITE ELEMENT FORMULATIONS

0 0 0
1 2 348 27 12

96 96 96

Q L Q L Q L
u u u

AE AE AE
     

0
4 53 0

96

Q L
u u

AE
   

FEM Solution - Substituting the numerical values for Q0, L,
A, and E into the displacement expressions gives:

0 0 0 0
1 2 3 437 19 6

96 96 96 96element element element element

Q L Q L Q L Q L
u u u u

AE AE AE AE
       

FEM Solution - Comparison of 4 element FEM formulation 
with exact solution

FINITE ELEMENT FORMULATIONS

0.00

0.10

0.20

0.30

0.40

0.50

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

4 element FEM

Exact Solution

  0Q L
u x

AE
     
 



x

L

FINITE ELEMENT FORMULATIONS

Example - Work the preceding problem again using eight 
equally-spaced elements.

The boundary value problem for this case is:

    0 0AEu Q x x L     

the boundary conditions are:
 

 
0 0

0

u

AEu L

 


 

( )u x

x( )q x

10 ft.

  0 1
x

Q x Q
L

   
 

29,000ksiE 
21 in.A 

0 10kips/in.Q 
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FINITE ELEMENT FORMULATIONS

Discretization - The domain will be divided into eight 
elements.

Example - Work the preceding problem again using eight 
equally-spaced elements.

( )u x

x

8e

L
l 

1 3 75 92 4 86

FINITE ELEMENT FORMULATIONS

Example - Applying the values for the geometry, material 
properties, and loading given in this problem and the 
boundary condition results in:

1

2

3

4

0
5

6

7

8

9

1 0 0 0 0 0 0 0 0 0

0 2 1 0 0 0 0 0 0 42

0 1 2 1 0 0 0 0 0 36

0 0 1 2 1 0 0 0 0 30
8

0 0 0 1 2 1 0 0 0 24
384

0 0 0 0 1 2 1 0 0 18

0 0 0 0 0 1 2 1 0 12

0 0 0 0 0 0 1 2 1 6

0 0 0 0 0 0 0 1 1 1

u

u

u

u
Q LAE

u
L

u

u

u

u

   
      
   
  

                                    




 
 
 
  


 
 
 
 
 
  

FINITE ELEMENT FORMULATIONS

Example - The solution of these equations is:
2 2

0 0
1 3 50 296 448

3,072 3,072

Q L Q L
u u u

AE AE
  

2 2
0 0

7 9504 512
3,072 3,072

Q L Q L
u u

AE AE
 

Example - Substituting the numerical values for Q0, L, A and 
E results in:

1 3 50 0.4784 in. 0.7241 in.u u u  

7 90.8147 in. 0.8276 in.u u 

FEM Solution - Comparison of 8 element FEM formulation 
with exact solution

FINITE ELEMENT FORMULATIONS

0.00

0.05

0.10

0.15

0.20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0



 
2

0Q L
u x

AE

 

  
 

8 element FEM

Exact Solution

x

L

Computation of Derived Variables - The exact solution for
the first derivative is:

FINITE ELEMENT FORMULATIONS

FEM Solution - Substituting the numerical values for Q0, L,
A, and E into the displacement expressions gives:

0 0 0 0
1 3 5 7169 91 37 7

384 384 384 384

Q L Q L Q L Q L
u u u u

AE AE AE AE
       

1 3 5 70.01821 0.00981 0.00399 0.00075u u u u      

FEM Solution - Comparison of 8 element FEM formulation 
with exact solution

FINITE ELEMENT FORMULATIONS

0.00

0.10

0.20

0.30

0.40

0.50

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

8 element FEM

Exact Solution

  0Q L
u x

AE
     
 



x

L
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PROBLEM #13 - Correct the "bleeped" version of ODE2 -
linear second-order differential equation solver. 

Use the ODE2 program to solve following axial deformation 
of the prismatic bar:

FINITE ELEMENT FORMULATIONS

( )u x

x( )Q x

10 ft.

  0 1
x

Q x Q
L

   
 

29,000ksiE 
21 in.A 

0 10kips/in.Q 

End of 

Chapter 2b
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