
ONE-DIMENSIONAL BOUNDARY 
VALUE PROBLEMS

Introduction

Typically, when engineers and scientists investigate the 
behavior of a solid deformable body, the flow of heat, the 
motion of a fluid, or the vibration of a system, the focus of 
the initial study is on a small differential region in the 
domain of the physical problem. 

The differential element may be a free body diagram, a 
control mass, or a control volume on which the basic 
physical behavior of the system such as a balance of 
momentum, a balance of energy, or a balance of mass is 
applied. 

ONE-DIMENSIONAL BOUNDARY 
VALUE PROBLEMS

Introduction

In this section we will discuss, explore, and develop finite 
element approximations to one-dimensional boundary 
value and eigenvalue problems.

There are two basic approaches used to develop finite 
element estimations of physical and mathematical 
problems. 

One approach deals directly with the differential equation in 
terms of the so-called weak formulation. 

The resulting set of equations is obtained by combining the 
weak formulation and Galerkin’s method. 
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ONE-DIMENSIONAL BOUNDARY 
VALUE PROBLEMS

Introduction

In the second approach, the total potential energy of the 
physical system, represented as an integral over the domain 
and over the boundary of the region, is determined. 

The system equations are developed by applying the Ritz
method. 

For the problem discussed in this section, both approaches 
produce identical finite element models.

The General Problem

Many physical problems may be represented mathematically 
by the same general class of boundary value problems 
defined by the following differential equation:

  0pu qu u f a x b       

with two boundary conditions of the form:

     p a u a u a A   

     p b u b u b B  

where the functions q, , and f are piecewise continuous 
functions of x, the function p has a continuous derivative, 
and that p, q, and  are positive on the interval  a < x < b.
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The General Problem

Many physical problems may be represented mathematically 
by the same general class of boundary value problems 
defined by the following differential equation:

with two boundary conditions of the form:

     p a u a u a A   

     p b u b u b B  

In the general equation,  is a parameter and , , A and B
are constants. 

This differential equation and the boundary conditions are 
called a regular Sturm-Liouville system. 

  0pu qu u f a x b       

The General Problem

Jacques Charles François Sturm (September 29, 1803 –
December 15, 1855) was a French mathematician of 
German extraction.

Joseph Liouville (March 24, 1809 – September 8, 1882) was 
a French mathematician.

Jacques Charles François Sturm Joseph Liouville 
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The General Problem

The general form of the Sturm-Liouville problem may be 
rewritten as:

This equation may be returned to the standard form by 
multiplying both sides by the following integration factor:

and defining the following functions: 

       0 1 2 3a x u a x u a x u a x    

1

0 0

1 a
exp dt

a a


 
  

 


0 2 3µa p µa q µa f    

The General Problem

The general purpose of the integration factor is to collapse the 
first terms into a single term. 

This means the coefficient of u’ must be the derivative of the 
coefficient of u’’. 

In general, the value of u strongly influences the character of 
the solution. 

The solution may be determined by the sum of two linearly 
independent equations, the homogeneous differential 
equation combined with a particular solution. 

If you are interested in these methods, consult a differential 
equations textbook or check out the section in your book.
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APPROXIMATION METHODS - WEIGHTED RESIDUALS

One of the approaches mentioned previously is known as 
Galerkin’s method and may be considered one of the so-
called methods of weighted residuals (MWR). 

In this section we will discuss several MWR techniques used 
to approximate typical Sturm-Liouville problems

  0pu qu u f a x b       

     p a u a u a A   

     p b u b u b B  

APPROXIMATION METHODS - WEIGHTED RESIDUALS

Classical MWR techniques search for continuous functions 
that solve the differential equation over the interval [a, b].

In contrast, the Galerkin method uses piecewise continuous 
functions defined over intervals defined by elements rather 
than continuous functions over the entire interval. 

     p a u a u a A   

     p b u b u b B  

  0pu qu u f a x b       
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APPROXIMATION METHODS - WEIGHTED RESIDUALS

The first step in the classic MWR is to assume an 
approximate solution of the form:

     0
1

N

n n
n

u x x a x 


 

where 0(x) is chosen to satisfy the boundary conditions of 
the problem, and each of the n(x) is chosen so as to 
satisfy all the corresponding homogeneous boundary 
conditions. The n(x) are called admissible functions. 

 u x

xa b

0

2

1

 u a

 u b

admissible functions. 

APPROXIMATION METHODS - WEIGHTED RESIDUALS

The first step in the classic MWR is to assume an 
approximate solution of the form:

     0
1

N

n n
n

u x x a x 


 

where 0(x) is chosen to satisfy the boundary conditions of 
the problem, and each of the n(x) is chosen so as to 
satisfy all the corresponding homogeneous boundary 
conditions. The n(x) are called admissible functions. 

 u x

xa b

0
2

1 u a

 u b
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APPROXIMATION METHODS - WEIGHTED RESIDUALS

Substituting this expression into the differential equation 
results in: 

where EN(x, a) is called the residual or error of the solution.

    0L u pu qu u f a x b        

       0 0 n n np q p q a f                  

 ,NE x a

 u x

xa b

u

u u a

 u b

APPROXIMATION METHODS - WEIGHTED RESIDUALS

The method of weighted residuals requires the error or the 
residual to be orthogonal to a set of weight functions wj(x) 
according to:

This equation is satisfied for each of the N independent 
weight functions wj(x). 

The result is a set of N linear equations in a unknowns. 

The difference between MWR techniques is the form of the 
weighting function. 

  0 1,2, ... ,
b

j N

a

w x E dx j N 
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xxj

1

APPROXIMATION METHODS - WEIGHTED RESIDUALS

The collocation method - In this technique, the weighting 
functions are:

   , 1,2, ... ,j jw x x x j N 

where (x, xj) is the Dirac delta function:

 
 

, 0

, 1

j j

j j

x x x x

x x x x





 

 

One interesting property of the delta function is that for a
continuous function f(x).

 ( ) , ( )
b

j j j
a

f x x x dx f x a x b   

APPROXIMATION METHODS - WEIGHTED RESIDUALS

   , 1,2, ... ,j jw x x x j N 

Setting the weighting function equal to the delta function
results in a MWR approximation of:

 ( , ) , ( , ) 0 1,2, ... ,
b

N j N j
a

E x x x dx E x j N    a a

Therefore, the residual error EN is evaluated at N interval
points and set equal to zero. The result is a set of N linear
equations, in the unknown coefficients a.

The collocation method - In this technique, the weighting 
functions are:
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APPROXIMATION METHODS - WEIGHTED RESIDUALS

The subdomain method - In this method, the problem 
domain is divided into a set of N subintervals defined as Ij. 
The integral of the residual error is set equal to zero over 
each subdomain.

In this case, the weighting function w(x, xj) is of:

( , ) 0 1,2, ... ,
j

N
I

E x dx j N  a

 
 

1

0

j j

j j

w x x I

w x x I

 

 

The resulting subdomains cannot overlap or be defined in
such a way as to leave some part of the interval from a to b
unaccounted.

xIj

1

APPROXIMATION METHODS - WEIGHTED RESIDUALS

The least squares method - This method is similar to the 
method used in regression techniques. The residual error 
is squared and values of the coefficients aN are determined 
which minimize the error.

2( , ) 0
b

N

a

E x dx  a

The “best” values of aN are found by:


 


( , )

( , ) 0 1,2, ... ,
b

N
N

ja

E x
E x dx j N

a

a
a

The weighting function w(xj) is:    ,
, N

j
j

E x
w x x

a






a
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APPROXIMATION METHODS - WEIGHTED RESIDUALS

The Galerkin method - In the Galerkin method the 
weighting functions wj(x) are the admissible functions j(x). 
The resulting MWR statement is:

This relationship states that error EN(x, a) is orthogonal to
each of the admissible functions j(x). Orthogonal functions
have many relationships. Several important definitions are:

 ( , ) 0 1,2, ... ,
b

N j

a

E x x dx j N   a

    0

1

b

m n

a

m n
x x dx

m n
 


 


  2

( ) 1
b

m

a

x dx 

Example - Consider the problem of the axial deformation of a 
prismatic bar we worked previously.

The boundary value problem for this case is:

APPROXIMATION METHODS - WEIGHTED RESIDUALS

    0 0AEu q x x L     

the boundary conditions are:
 

 
0 0u

AEu L P

 


 

( )u x

x( )q x

10 ft

  0 1
x

q x Q
L

   
 

 29,000E ksi

 21A in

0 10 /Q kips in
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For the given functions and parameters the differential 
equation and boundary conditions are:

The approximate solution is given as:

APPROXIMATION METHODS - WEIGHTED RESIDUALS

Note this function satisfies the boundary conditions of the
problem and is therefore an admissible function.

  0 (0) 0 ( ) 0AEu q x u AEu L    

1

2 1

2

N

n

n
u a sin x

L
   

 


 0 0u   
1

2 1
cos 0

2

N

n

n
u L a     

 


 4n

The first four admissible functions of the approximation are:

APPROXIMATION METHODS - WEIGHTED RESIDUALS

(0) 0u




   
 


4

1

2 1

2n
n

n
u a sin x

L
 ( ) 0AEu L

x L

 1n 2n

 3n
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The residual error term may be calculated as:

where:

APPROXIMATION METHODS - WEIGHTED RESIDUALS

2 1

2

n
m

L




   ,NE x AEu q x  a

      


   2

1

N

n
n

AE a m sin m x q x

In these examples, we will set N equal to 3.

   
 


1

2 1

2

N

n

n
u a sin x

L

Collocation Method - Choose three locations where the 
residual error will be assumed to be zero. 

APPROXIMATION METHODS - WEIGHTED RESIDUALS

3 , 0
4

L
E

   
 

a

Generally, these locations are equally spaced. Therefore, the 
values of xj are 3, , and4 2 4

LL L

3 , 0
2

L
E

   
 

a 3

3
, 0

4

L
E

   
 

a
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Collocation Method - Three equations in aN may be written 
as:

APPROXIMATION METHODS - WEIGHTED RESIDUALS

23

3 2
1

2 1 2 1
,

4 4 2 2 4n
n

L L AE n n
E q a sin

L




                   
        

a

 1 2 3 02
0.9442 20.5162 56.9895 0.75

AE
a a a Q

L
    

 3 1 2 3 02
, 1.7447 15.7024 43.6179 0.5

2

L AE
E a a a Q

L
       
 

a

 3 1 2 3 02

3
, 2.2796 8.4981 23.6058 0.25

4

L AE
E a a a Q

L
       
 

a

Collocation Method - These equations may be expressed in 
matrix form as:

APPROXIMATION METHODS - WEIGHTED RESIDUALS

     
         
          

1

2 02

3

0.9442 20.5162 56.9895 0.75

1.7447 15.7024 43.6179 0.50

2.2796 8.4981 23.6058 0.25

a
AE

a Q
L

a

Solving these equations for aN gives:

2 2 2
0 0 0

1 2 30.2099 0.0177 0.0033
Q L Q L Q L

a a a
AE AE AE

  
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Collocation Method - The three term approximation is: 

APPROXIMATION METHODS - WEIGHTED RESIDUALS

The exact solution may be determined from the following 
expression:

2
0 3 5

0.2099 0.0177 0.0033
2 2 2

Q L x x x
sin sin sin

AE L L L

               
      

'

( ) ( ) '
x x

AEu x q x dx dx  
'

0 1 '
x x x

Q dx dx
L

    
  

3 2
2

0

1 1 1

6 2 2

x x x
Q L

L L L

              
       

Collocation Method - The three term approximation is: 

APPROXIMATION METHODS - WEIGHTED RESIDUALS

Exact Solution



x

L

collocation

Comparison of various MWR techniques

 
2

0Q L
u x

AE

 

  
 
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3
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Collocation Method - The error E3 is: 

APPROXIMATION METHODS - WEIGHTED RESIDUALS

3 0E Q

collocation points 3 0E

Subdomain Method - Choose three equally-spaced intervals 
[0, L/3], [L/3, 2L/3], and [2L/3, L].  

The resulting three equations are:

APPROXIMATION METHODS - WEIGHTED RESIDUALS

/ 3 2 /3

3 3 3
0 /3 2 /3

0 0 0
L L L

L L

E dx E dx E dx    
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Subdomain Method - Three equations in aN may be written 
as:

APPROXIMATION METHODS - WEIGHTED RESIDUALS

 
2/3 /3 /3 3

3 2
10 0 0

2 1
( )

2

L L L

n
n

AE n
E dx q x dx a sin m x dx

L
 



    
 

  

 1 2 3 00.2104 4.7123 14.6557 0.2778
AE

a a a Q L
L

    

 
2 /3

3 1 2 3 0

/3

0.5749 4.7123 10.7287 0.1666
L

L

AE
E dx a a a Q L

L
    

 3 1 2 3 0

2 /3

0.7852 4.7123 3.9269 0.0556
L

L

AE
E dx a a a Q L

L
    

Subdomain Method - These equations may be expressed in 
matrix form as:

APPROXIMATION METHODS - WEIGHTED RESIDUALS

     
         
         

1

2 02

3

0.2104 4.7123 14.6557 0.2778

0.5749 4.7123 10.7287 0.1666

0.7853 4.7123 3.9269 0.0556

a
AE

a Q
L

a

Solving these equations for aN gives:

2 2 2
0 0 0

1 2 30.1996 0.0275 0.0072
Q L Q L Q L

a a a
AE AE AE

  
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Subdomain Method - The three term approximation is:

APPROXIMATION METHODS - WEIGHTED RESIDUALS

Collocation Method - The three term approximation is: 

2
0 3 5

0.2099 0.0177 0.0033
2 2 2

Q L x x x
sin sin sin

AE L L L

               
      

2
0 3 5

0.1996 0.0275 0.0072
2 2 2

Q L x x x
sin sin sin

AE L L L

               
      

Subdomain Method - The three term approximation is:

APPROXIMATION METHODS - WEIGHTED RESIDUALS

Exact Solution



x

L

subdomain

collocation

Comparison of various MWR techniques

 
2

0Q L
u x

AE

 

  
 
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Subdomain Method - The error E3 is: 

APPROXIMATION METHODS - WEIGHTED RESIDUALS

3 0E Q


1/3

3
0

0E 
2/3

3
1/3

0E 
1

3
2/3

0E
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
3

(R
e
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d

u
a

l E
rr

o
r 

N
 =

 3
)

Least Squares Method - The weighting function for this 
method is:

APPROXIMATION METHODS - WEIGHTED RESIDUALS

In each case the weighting functions have a few constants 
that may be eliminated since the residual statement is set 
equal to zero. 

There the final form of the wn(x) is:

  3
n

n

E
w x

a





   2

n
AE m sin m x 

    2 1

2n

n
w x sin m x m

L
 

 
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Least Squares Method - Three equations in aN may be 
written as:

APPROXIMATION METHODS - WEIGHTED RESIDUALS

 3

0

0
L

nE w x dx 

   
23

2
10

2 1
( )

2

L

n n
n

AE n
q x a sin m x w x dx

L
 



        

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 

Least Squares Method - Three equations in aN may be 
written as:

APPROXIMATION METHODS - WEIGHTED RESIDUALS
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Least Squares Method - Three equations in aN may be 
written as:

APPROXIMATION METHODS - WEIGHTED RESIDUALS

 3

0

0
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nE w x dx 
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 

      
 

Least Squares Method - These equations may be expressed 
in matrix form as:

APPROXIMATION METHODS - WEIGHTED RESIDUALS

Solving these equations for aN gives:


     

         
         

12

2 0

3

1 0 0 0.2313

0 9 0 0.2572
8

0 0 25 0.1111

a
AE

a LQ
L

a

2 2 2
0 0 0

1 2 30.1875 0.0232 0.0036
Q L Q L Q L

a a a
AE AE AE

  
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Subdomain Method - The three term approximation is:

APPROXIMATION METHODS - WEIGHTED RESIDUALS

Collocation Method - The three term approximation is: 

2
0 3 5

0.2099 0.0177 0.0033
2 2 2

Q L x x x
sin sin sin

AE L L L

               
      

2
0 3 5
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2 2 2

Q L x x x
sin sin sin

AE L L L

               
      

Least Squares Method - The three term approximation is:

2
0 3 5

0.1875 0.0232 0.0036
2 2 2

Q L x x x
sin sin sin

AE L L L

               
      

APPROXIMATION METHODS - WEIGHTED RESIDUALS

Exact Solution



x

L

least squares

subdomain

collocation

Comparison of various MWR techniques

 
2

0Q L
u x

AE

 

  
 
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Least Squares Method - The error E3 is: 

APPROXIMATION METHODS - WEIGHTED RESIDUALS
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Least Squares Method - The error E3 is: 

APPROXIMATION METHODS - WEIGHTED RESIDUALS

3 0nE w Q 
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3 1
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0E w 
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1
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0E w
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Galerkin Method - The weighting function for this method is 
the same as the admissible function. 

In this case, the weighting function is the same as in the least 
squares method.

APPROXIMATION METHODS - WEIGHTED RESIDUALS

  3
n

n

E
w x

a





   2

n
AE m sin m x 

    2 1

2n

n
w x sin m x m

L
 

 

Galerkin Method - The resulting equations are determined 
from the following relationships:

APPROXIMATION METHODS - WEIGHTED RESIDUALS

3

0

0
2

L x
E sin dx

L

   
 

3

0

3
0

2

L x
E sin dx

L

   
 

3

0

5
0

2

L x
E sin dx

L

   
 

Galerkin Method - The Galerkin approximation is the same 
as the least squares approximation.
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Subdomain Method

APPROXIMATION METHODS - WEIGHTED RESIDUALS

Collocation Method
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0.2099 0.0177 0.0033
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Galerkin/Least Squares Method
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APPROXIMATION METHODS - WEIGHTED RESIDUALS

Exact Solution


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collocation

Comparison of various MWR techniques
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Least Squares Method - The error E3 is: 

APPROXIMATION METHODS - WEIGHTED RESIDUALS

3 0E Q

APPROXIMATION METHODS - WEIGHTED RESIDUALS

PROBLEM #8 - For the following differential equations 
construct a three term approximation using the a) collocation 
method, b) subdomain method, c) least squares method, and
d) Galerkin method.

2 (0) 0
0 0 1

(1) 0

u
u x u x x

u


       

Assume an approximate solution of the form:

 
1

N

nu a sin n x 

Plot the final results and comment on any differences in the 
various methods compared to the exact solution.
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APPROXIMATE METHODS - VARIATION METHODS

The weighted residual methods we discussed previously 
attacked the differential equation directly to generate an 
approximation. 

In this section, we will use the Ritz method to generate an 
approximation to the differential equation based on 
variational principles.

Consider the weak formulation used in the method of 
weighted residuals for the general Sturm-Liouville boundary 
value problem:

  0pu qu u f a x b       

     p a u a u a A   

     p b u b u b B  

APPROXIMATE METHODS - VARIATION METHODS

First, consider the case where the u term is absent. 

Multiple the weak formulation by a test function  (x):

where (x) is a suitable admissible function which satisfies 
the homogeneous form of any boundary conditions of the 
dependent variable u.

The term “weak” used in describing this formulation is based 
on the fact that we require the differential equation to be 
satisfied in an average sense over a small interval a < x < b
and not at every point in the interval.

  ( ) 0
b

a

pu qu f x dx      
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APPROXIMATE METHODS - VARIATION METHODS

Notice that the differential equation has a second derivative of 
u and that the test function  (admissible function) is required 
only to be continuous. To eliminate this inconsistency, 
integrate the first term by parts:

The resulting weak formulation is:

             ( )
b b

b

a
a a

pu x dx pu pu dx

        
b

b

a
a

pu pu qu f dx

           ( ) ( ) ( ) ( ) ( ) ( )
b

a

b p b u b a p a u a pu qu f dx

APPROXIMATE METHODS - VARIATION METHODS

From the boundary conditions given for the general Sturm-
Liouville problem:

This eliminates the derivative terms at the boundary. The 
weak statement becomes:

           p b u b B u b p a u a A u a       

 

 

( ) ( ) ( ) ( )

( ) ( )

b

a

b

a

p u q u dx b u b a u a

f dx B b A a

   

  

    

  




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APPROXIMATE METHODS - VARIATION METHODS

The dependent variable is now required to have only a first 
derivative and the continuity of the u and are the same. 

The left-hand side of the above expression is an example of a 
bilinear function and may be written as:

The right-hand side of the weak formulation is a linear 
function and may written as:

         ( , ) ( ) ( ) ( ) ( )
b

a

B u p u q u dx b u b a u a

 ( ) ( ) ( )
b

a

r f dx B b A a     

APPROXIMATE METHODS - VARIATION METHODS

The weak formulation may be written as:

It can be shown that B(,u) = B(u,), therefore there exist a 
functional of the form:

   ,B u r 

     ,

2

B u u
Z u r u 

If this functional is required to be stationary then it yields the 
original boundary value problem. In our case, the Sturm-
Liouville problem can be written as:

 

 

2 2
2 21 ( ) ( )

( )
2 2 2

( ) ( )

b

a

b

a

u b u a
Z u p u qu dx

uf dx Bu b Au a

       

  




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APPROXIMATE METHODS - VARIATION METHODS

In order to determine the stationary value that yield the 
statement of the boundary value problem, some basic ideas 
of the calculus of variations are needed.

Basic Calculus of Variations - Unlike plain calculus which 
deals with the change in a function, say f(x), calculus of 
variations deals with a functional which are dependent on 
functions as well as variables. 

For example, a functional may be written as:  , ,F x u u

APPROXIMATE METHODS - VARIATION METHODS

In our discussion, the functional in question is: 

with boundary conditions u(a) = ua and u(b) = ub. Such a 
problem is referred to as a fixed endpoint problem. This is 
one of the simplest problems in calculus of variations.

 ( ) , ,
b

a

Z u F x u u 

First, assume a possible solution u (admissible function) and 
compute the value of Z(u). 

Next, vary the solution a small amount, say an infinitesimal 
amount and recompute the value of the functional. 

If the change in the functional is very small then you have the 
solution to the differential equation. 
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APPROXIMATE METHODS - VARIATION METHODS

This is not a convenient way for solving these types of 
problems. 

The process seems to be a hopelessly involved sequence of 
trials and experiences. 

Calculus of variations allows a way to set up a form that 
determines all possible function(s) which render the 
functional stationary.

APPROXIMATE METHODS - VARIATION METHODS

Let’s define a family of curve U(x) = u(x) + (x) which varies 
from the solution u(x) by a term (x). 

The value of  is considered small and the function (x) is an 
arbitrary function which vanishes at the ends of the interval 
a < x < b, (a) = (b) = 0. 

( ) ( )u x x

( )x

 U x

xa b

( )u x

 u a

 u b
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APPROXIMATE METHODS - VARIATION METHODS

Therefore the original functional may be written as:

 ( ) , ,
b

a

Z u F x u u dx    

( ) ( )u x x

( )x

 U x

xa b

( )u x

 u a

 u b

APPROXIMATE METHODS - VARIATION METHODS

Requiring the functional Z(u) to be stationary with respect to 
as  approaches zero states that:

 0 0 0
dZ

lim Z
d    

Computing dZ/d results in:

 ( )
, ,

b b

a a

dZ u d dF
F x u u dx dx

d d d
 

  
     

 
 

 
 b

a

d u d uF F
dx

u d u d

 
   

    
        


   
b

a

F F
dx

u u
 

 
           


(0) 0
b

a

F F
Z dx

u u
         
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APPROXIMATE METHODS - VARIATION METHODS

Integrating the second term by parts results in:

  
   

     
 0

b b

a a

d F uF F
dx

u dx u

  
   

     
 0

b b

a

d F uF F
dx

u dx u

  
   

    
 0
b

a

d F u F
dx

dx u

Since (a) is zero, the equation reduces to:

If we choose  (b) to be equal to zero:

APPROXIMATE METHODS - VARIATION METHODS

Since the  function is an admissible function the integrand 
should vanish:

This second order differential equation is the Euler equation
whose solutions are called extermals. 

The solution to the original problem, the function which gives 
the stationary value, is an extermal with the two boundary 
conditions u(a) = ua and u(b) = ub.

 /
0

d F u F

dx u

   
 

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APPROXIMATE METHODS - VARIATION METHODS

If we choose an arbitrary  that does not vanish at x = b then 
the condition in the above equation leads to: 

This term is called a natural boundary condition. 

This type of condition is usually associated with a derivative 
condition at the boundary. 

If a value of u is specified at a boundary, then the condition is 
called an essential or forced boundary condition.

b
F

u




APPROXIMATE METHODS - VARIATION METHODS

Example - Consider the axial deformation of the rod we have 
previously discussed. The potential energy functional is:

Since u at x = L is not prescribed, then the boundary condition 
at x = L will be a natural boundary condition. 

Generate the Euler equations and corresponding boundary 
conditions.

 2

0

( ) (0) 0
2

L AE u
Z u qu dx u

 
   
 
 

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APPROXIMATE METHODS - VARIATION METHODS

Requiring the functional Z to be stationary with respect to  as 
 approaches zero states that:

 0 0 0
dZ

lim Z
d    

(0) 0
b

a

F F
Z dx

u u
         

 2

2

AE u
F qu


 

therefore

where the functional F is:

APPROXIMATE METHODS - VARIATION METHODS

Integrating the second term by parts results in:

The forced boundary condition of u(0) = 0 requires (a) = 0, 
therefore:

Since  is arbitrary at x = L then it may not vanish at x = b, 
leads to the conclusion that: 

 
0

b b

a a

d F uF F
dx

u dx u


 

  
      


 
0

b b

a

d F uF F
dx

u dx u


 

  
      


0 0
b b

F F

du u
  

  
  

CIVL 7/8111 1-D Boundary Value Problems - Linear Elements - Part 1 34/42



APPROXIMATE METHODS - VARIATION METHODS

The Euler equation is the integrand of the functional:

which for this problem becomes:

 /
0

d F u F

dx u

   
 


   

 

0 0

with 0

d AEu
q AEu q

dx
AEu L


      

 

APPROXIMATE METHODS - VARIATION METHODS

PROBLEM #9 - Generate the Euler equations and forced 
boundary conditions for the following functionals:

 22 2

1

( ) (2) 1
2 2

x u u u
Z u dx u

x x

 
    
 
 


 2 2

0

( ) (0) 0
2 2

L AE u ku
Z u qu dx u

x

 
    
 
 

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APPROXIMATE METHODS - VARIATION METHODS

APPROXIMATE METHOD OF RITZ

In the previous section we found that if the energy functional 
for a given problem exists, the governing differential 
equation may be obtained by requiring the energy functional 
to be stationary. 

Instead of finding the governing differential equation from the 
energy functional we could use the relationship directly to 
approximate the solution. 

One of the most powerful techniques of obtaining an 
approximate solution to the boundary value problem is the 
method of Ritz.

APPROXIMATE METHODS - METHOD OF RITZ

Consider the following functional:

 ( ) , , ( )
b

a

a

Z u F x u u dx u a u 
with an approximate solution of the form:

   0
1

N

n n
n

u x c x 


 

The nonhomogeneous boundary conditions are satisfied by 
0(x) and the homogeneous boundary conditions are 
satisfied by each admissible function n(x). 
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This approximation is identical to the weighted residual 
methods we discussed earlier except for one important 
difference, the admissible functions for MWR are required to 
satisfy all boundary conditions, whereas the admissible 
function for the Ritz method are required to satisfy only the 
essential or forced boundary conditions. 

APPROXIMATE METHODS - METHOD OF RITZ

The approximation of u is substituted into the functional Z. 

The stationary value of the functional is found by requiring:

0 1, 2, ... ,
i

Z
i N

c


 



This relationship gives us a set of N algebraic equations in 
the unknowns ci. 

The Sturm-Liouville problem:

APPROXIMATE METHODS - METHOD OF RITZ

with the corresponding functional:

 2 2 2 2( ) ( )
( ) ( ) ( )

2 2 2

b

a

p u qu u a u b
Z u uf dx Au a Bu b

   
      
  


0pu qu u f a x b      

     p a u a u a A   

     p b u b u b B  
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Example - Consider the problem of the axial deformation of a 
prismatic bar we worked previously.

The boundary value problem for this case is:

        0 0AEu Q x x L

the boundary conditions are:
 

 
 


 

0 0

0

u

AEu L

APPROXIMATE METHODS - METHOD OF RITZ

( )u x

x( )q x

10 ft

     
 

0 1
x

Q x Q
L

 29,000E ksi

 21A in

0 10 /Q kips in

The Sturm-Liouville form of this equation requires that p = AE, 
q = 0, f = Q(x), and A = B =  =  = 0. The corresponding 
functional is:

APPROXIMATE METHODS - METHOD OF RITZ

Let’s assume an approximate solution as:

  
  
 
 


2

0

( )
2

L AE u
Z u Qu dx

1

2 1 2 1

2 2

N

n
n

n n
u a sin x m

L L




    
 


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Substituting the approximation into the functional Z(u) gives:

APPROXIMATE METHODS - METHOD OF RITZ

Requiring the functional to be stationary with respect to each
ai gives:

   
2

0
1 10

( ) cos 1 sin
2

L N N

n n
n n

AE x
Z u a m m x Q a m x dx

L
  

 

            
      

 

   
10

cos cos
L N

n i i
n

AE a m m x m m x dx   


  
   

  


( )
0

i

Z u

a






 0
0

1 sin 0
L

i

x
Q m x dx

L


      
  

 2 1

2i

i
m

L




The preceding equation may be written as:

APPROXIMATE METHODS - METHOD OF RITZ

2 1

2i

i
m

L




   2

1 0

cos cos
LN

n i i
n

AE a m m m x m x dx  

 

 0

0

1 sin
L

i

x
Q m x dx

L
   

 
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Taking N = 3, a three term Ritz solution may be formed. For 
example, when i = 1 the following equation is generated:

APPROXIMATE METHODS - METHOD OF RITZ

When i = 2

 
2

0
1 0 0

cos cos 1 sin
2 2 2

L LN

n

AE m x x x
a m x dx Q dx

L L L L

             
     

  

When i = 3

 
2

0
1 0 0

3 3 3
cos cos 1 sin

2 2 2

L LN

n

AE m x x x
a m x dx Q dx

L L L L

             
     

  

 
2

0
1 0 0

5 5 5
cos cos 1 sin

2 2 2

L LN

n

AE m x x x
a m x dx Q dx

L L L L

             
     

  

After integration, the following set of equations may be 
formed:

APPROXIMATE METHODS - METHOD OF RITZ

Solving these equations for aN gives:

12

2 0

3

1 0 0 0.2313

0 9 0 0.2572
8

0 0 25 0.1111

a
AE

a LQ
L

a


     

         
         

2 2 2
0 0 0

1 2 30.1875 0.0232 0.0036
Q L Q L Q L

a a a
AE AE AE

  
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Least Squares/Galerkin Method - The three term 
approximation is:

Method of Ritz - The three term approximation is:

2
0 3 5

0.1875 0.0232 0.0036
2 2 2

Q L x x x
sin sin sin

AE L L L

               
      

APPROXIMATE METHODS - METHOD OF RITZ

2
0 3 5

0.1875 0.0232 0.0036
2 2 2

Q L x x x
sin sin sin

AE L L L

               
      

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Exact Solution



x

L

Ritz, least squares,
and Galerkin

subdomain

collocation

Comparison of various MWR and variational techniques

 
2

0Q L
u x

AE

 

  
 
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PROBLEM #10 - For the following functional use a three term 
Ritz approximation.

APPROXIMATE METHODS - METHOD OF RITZ

Assume an approximate solution of the form:

 2 2 21

0

(0) 0
( )

(1) 02

u x u u
Z u xu dx

u

         


 
1

( )
N

n
n

u x a sin n x


 

Plot the final results and comment on any differences in the 
variational method and the results from Problem #8. 

End of 

Chapter 2a
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