
A First Course in Finite Elements

Introduction

 The finite element method has become a powerful tool
for the numerical solution of a wide range of engineering
problems.

 Applications range from deformation and stress analysis
of automotive, aircraft, building, and bridge structures to
field analysis of heat flux, fluid flow, magnetic flux,
seepage, and other flow problems.

A First Course in Finite Elements

Introduction

 With the advances in computer technology and CAD
systems, complex problems can be modeled with
relative ease.

 Several alternative configurations can be tried out on a
computer before the first prototype is built.

 All of this suggests that we need to keep pace with these
developments by understanding the basic theory,
modeling techniques, and computational aspects of the
finite element method.
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A First Course in Finite Elements

Introduction

 In this method of analysis, a complex region defining a 
continuum is discretized into simple geometric shapes 
called finite elements. 

 The material properties and the governing relationships 
are considered over these elements and expressed in 
terms of unknown values at element corners. 

 An assembly process, duly considering the boundary 
conditions, results in a set of equations. 

 Solution of these equations gives us the approximate 
behavior of the continuum.

A First Course in Finite Elements

Piecewise linear function in one dimensions.

x1 x2 x3 x4 x5 x6 x7

CIVL 7/8111  Introduction to Finite Element Method (FEM) 2/66



A First Course in Finite Elements

Piecewise linear function in 
two dimensions.

Original two dimensional 
domain

Discretization of two 
dimensional domain

A First Course in Finite Elements
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A First Course in Finite Elements
A magnetic problem using 

FEM software

Colors indicate that the analyst has set 
material properties for each zone, in 
this case a conducting wire coil in 
orange; a ferromagnetic component 
(perhaps iron) in light blue; and air in 
grey. 

FEM solution to the problem 

The color represents the amplitude 
of the magnetic flux density, as 
indicated by the scale in the inset 
legend, red being high amplitude.

A First Course in Finite Elements
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A First Course in Finite Elements

A First Course in Finite Elements
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A First Course in Finite Elements

A First Course in Finite Elements
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A First Course in Finite Elements

This example duplicates a benchmark problem for time-dependent buoyant flow in 
porous media. Known as the Elder problem, it follows a laboratory experiment to 
study thermal convection. This model examines the Elder problem for concentrations 
through a 2-way coupling of two physics interfaces: Darcy’s Law and Solute 
Transport.

A First Course in Finite Elements

Chemical vapor deposition (CVD) allows a thin film to be grown on a substrate 
through molecules and molecular fragments adsorbing and reacting on a surface. 
This example illustrates the modeling of such a CVD reactor where triethyl-gallium 
first decomposes, and the reaction products along with arsine (AsH3) adsorb and 
react on a substrate to form GaAs layers.
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A First Course in Finite Elements

A typical automotive exhaust system is a hybrid construction consisting of a 
combination of reflective and dissipative muffler elements. The reflective parts are 
normally tuned to remove dominating low-frequency engine harmonics while the 
dissipative parts are designed to take care of higher-frequency noise. The muffler 
analyzed in this model, is an example of a complex hybrid muffler in which the 
dissipative element is created completely by flow through perforated pipes and 
plates.

A First Course in Finite Elements

This example models the radiation of fan noise from the annular duct of a 
turbofan aeroengine. When the jet stream exits the duct, a vortex sheet appears 
along the extension of the duct wall due to the surrounding air moving at a lower 
speed. The near field on both sides of the vortex sheet is calculated.
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A First Course in Finite Elements

Damping elements involving layers of viscoelastic materials are often used for 
reduction of seismic and wind induced vibrations in buildings and other tall 
structures. The common feature is that the frequency of the forced vibrations is 
low. This model studies a forced response of a typical viscoelastic damper. The 
analysis involves two cases: a frequency response analysis and a time-
dependent analysis.

A First Course in Finite Elements

This model treats the free convection and heat transfer of a glass of cold water 
heated to room temperature. Initially, the glass and the water are at 5 °C and are 
then put on a table in a room at 25 °C. The nonisothermal flow is coupled to heat 
transfer using the Heat Transfer module.
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A First Course in Finite Elements

The complete analysis consists of two distinct but coupled procedures: a fluid-
dynamics analysis with the calculation of the velocity field and pressure distribution 
in the blood (variable in time and in space) and the mechanical analysis with the 
deformation of the tissue and artery. The material is assumed to be nonlinear and a 
hyperelastic model is used.

A First Course in Finite Elements

This model studies the fluid flow through a bending pipe in 3D for the Reynolds 
number 300,000. Because of the high Reynolds number, the k-epsilon turbulence 
model is used. Calculations with and without corner smoothing are performed. The 
results are compared with experimental data.
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A First Course in Finite Elements

This model simulates the time-dependent flow past a cylinder. The velocity field 
magnitude at different time steps is shown.

A First Course in Finite Elements

Historical Background

 Basic ideas of the finite element method originated from 
advances in aircraft structural analysis. 

 In 1941, Hrenikoff presented a solution of elasticity 
problems using the “frame work method.”  

 Courant’s paper, which used piecewise polynomial 
interpolation over triangular subregions to model torsion 
problems, appeared in 1943. 

 Turner et al. (1956) derived stiffness matrices for truss, 
beam, and other elements. 

 The term “finite element” was first coined and used by 
Clough in 1960.
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A First Course in Finite Elements

Historical Background

 In the early 1960s, engineers used the method for 
approximate solution of problems in stress analysis, fluid 
flow, heat transfer, and other areas. 

 A book by Argyris in 1955 on energy theorems and 
matrix methods laid a foundation for further 
developments in finite element studies. 

 The first book on finite elements by Zienkiewicz and 
Chung was published in 1967. 

 In the late 1960s and early 1970s, finite element 
analysis was applied to nonlinear problems and large 
deformations. 

A First Course in Finite Elements

Historical Background

 Mathematical foundations were laid in the 1970s. 

 New element development, convergence studies, and 
other related areas fall in this category.

 Today, developments in high-performance-computers 
and availability of powerful microcomputers have 
brought this method within reach of students and 
engineers working in small industries.
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A First Course in Finite Elements

Historical Background

 Until the early 1950s, matrix methods and the 
associated finite element method were not readily 
adaptable for solving complicated problems because of 
the large number of algebraic equations that resulted. 

 With the advent of the modern computers, the solution of 
thousands of equations in a matter of seconds became 
possible. 

A First Course in Finite Elements

Basic Ingredients - Discrete Problems

The basic steps or building blocks of any application of FEM 
to a mathematical or physical problem are:

1. Discretization

2. Interpolation

3. Elemental Description or Formulation

4. Assembly

5. Constraints

6. Solution

7. Computation of Derived Variables
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Step 1 - Discretize and Select Element Types

Step 1 - Discretize and Select Element Types

Step 1 involves dividing the body into an equivalent system 
of finite elements with associated nodes and choosing the 
most appropriate element type. 

The total number of elements used and their variation in size 
and type within a given body are primarily matters of 
engineering judgment. 

The elements must be made small enough to give usable 
results and yet large enough to reduce computational effort. 

Small elements (and possibly higher-order elements) are 
generally desirable where the results are changing rapidly, 
such as where changes in geometry occur, whereas large 
elements can be used where results are relatively constant. 
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Step 1 - Discretize and Select Element Types

Primary line elements consist of bar (or truss) and beam 
elements. 

They have a cross-sectional area but are usually represented 
by line segments. 

The simplest line element (called a linear element) has two 
nodes, one at each end, although higher-order elements 
having three nodes or more (called quadratic, cubic, etc. 
elements) also exist. 

Step 1 - Discretize and Select Element Types
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Step 1 - Discretize and Select Element Types

The basic two-dimensional (or plane) elements are loaded by 
forces in their own plane (plane stress or plane strain 
conditions). They are triangular or quadrilateral elements.

The simplest two-dimensional elements have corner nodes 
only (linear elements) with straight sides or boundaries 
although there are also higher-order elements, typically with 
mid-side nodes (called quadratic elements) and curved 
sides. 

Step 1 - Discretize and Select Element Types
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Step 1 - Discretize and Select Element Types

Step 1 - Discretize and Select Element Types
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Step 1 - Discretize and Select Element Types

The most common three-dimensional elements are 
tetrahedral and hexahedral (or brick) elements; they are 
used when it becomes necessary to perform a three-
dimensional stress analysis. 

The basic three dimensional elements have corner nodes 
only and straight sides, whereas higher-order elements with 
mid-edge nodes (and possible mid-face nodes) have curved 
surfaces for their sides 

Step 1 - Discretize and Select Element Types
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Step 1 - Discretize and Select Element Types

Water phase saturations (top figures) and CO2 concentration (bottom figures) 
profiles at 50 and 100 days. The CO2 moves in complicated and unexpected ways.

Step 1 - Discretize and Select Element Types
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Step 1 - Discretize and Select Element Types

Step 1 - Discretize and Select Element Types

As a consequence of our changing climate, large efforts have been made to 
understand the social risks of storm surges (hypothesized to increase in frequency in 
warmer climate scenarios) and sea level rise in coastal areas. Of particular interest is 
the role that wetlands and coastal marshes play in storm surges and flooding events.
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Step 1 - Discretize and Select Element Types

Step 1 - Discretize and Select Element Types
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Step 1 - Discretize and Select Element Types

The axisymmetric element is developed by rotating a 
triangle or quadrilateral about a fixed axis located in the plane 
of the element through 360°. 

This element can be used when the geometry and loading of 
the problem are axisymmetric.

Step 1 - Discretize and Select Element Types
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Step 1 - Discretize and Select Element Types

Step 1 - Discretize and Select Element Types

Consider the problem of the axial deformation of a linearly 
elastic bar under an axial load P at x = L and distributed 
external load q(x). 

The cross-sectional area, A(x), the modulus of elasticity, E, 
and the mass density,  (x), are given.

P = external load
q(x) = distributed load
u(x) = axial displacementu(x)

x

L 

P 

q(x)
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Step 1 - Discretize and Select Element Types

Let’s assume that the variation of the loads, P(x) and q(x), and 
the cross-sectional area, A(x), are complicated and the exact 
solution to the above equation cannot be found. 

The basic concept of FEM is to cut the problem up into a series 
of simpler discrete problems and relate the parts to each other 
to model the continuous material. A possible example of a 
discrete model of the bar is:

u(x)

x

L 

P q(x)

1 2 3 4 5 

Step 1 - Discretize and Select Element Types

Discrete means essentially that we are willing to accept a model 
that will yield information about the dependent variables at a 
finite number of points, referred to as nodes, within the interval 
0 ≤ x ≤ L.  

Each node is assigned a displacement ui, i = 1 to 5. The problem 
has been converted from a continuous model of infinite degrees 
of freedom to one with a finite number of degrees of freedom, in 
this case n = 5.

u(x)

x

L 

P q(x)

1 2 3 4 5 
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Step 1 - Discretize and Select Element Types

The elastic effects of the discrete parts of the bar may be 
represented as elements. 

In our problem, the elongation of an axial bar under an axial load 
is represented by:

avg

Pl
e

A E
 avgA E

P e ke
l

 
  
 

u(x)

x

L 

P q(x)

1 2 3 4 5 

Step 1 - Discretize and Select Element Types

Therefore, an elastic bar of length l is equivalent to a simple 
linear spring. 

The stiffness associated with each “element” will be a different 
value since Aavg varies from node to node. Let’s approximate the 
stiffness, k, by taking:

 1

2
i i

i

A A E
k

l


1

2
i i

avg

A A
A 



u(x)

x

l1

P q(x)

1 2 3 4 5 

l2 l3 l4

AE1 AE2 AE3 AE4
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Step 1 - Discretize and Select Element Types

Equivalent systems of springs connecting each set of nodes are 
referred to as elements. 

An element generally describes some basic physical property of 
the system. In the case of the axial bar, the relationship between 
force and displacement is:

 1i i i i i iF k e k u u  

Another important physical parameter associated with the 
element is the mass. 

There are several ways to distribute the mass. Keeping the 
concept of the element we have developed so far, let’s consider 
the mass of the portion of the bar between nodes i and i+1 
defining element i.

u(x)

x 

l1

i i+1 

l2 l3 l4

Step 1 - Discretize and Select Element Types

Keeping the concept of the element we have developed so far, 
let’s consider the mass of the portion of the bar between nodes i
and i+1 defining element i.

One method of distributing the mass is to average the mass over 
the element and divide it equally between the two nodes defining 
the element. The average mass intensity is:

          
 1 1*

2
i i i ix A x x A x

m

u(x)

x 

l1

i i+1 

l2 l3 l4


 1

2
i im m
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Step 1 - Discretize and Select Element Types

Keeping the concept of the element we have developed so far, 
let’s consider the mass of the portion of the bar between nodes i
and i+1 defining element i.

Therefore the discrete lumped mass system is:

 
 1 2 1

1 4

m m l
M

M1 M2 M3 M4 M5

    
 1 2 1 2 3 2

2 4 4

m m l m m l
M

    
 2 3 2 3 4 3

3 4 4

m m l m m l
M

    
 3 4 3 4 5 4

4 4 4

m m l m m l
M

 
 4 5 4

5 4

m m l
M

u(x)

x 

l1

i i+1 

l2 l3 l4

Step 1 - Discretize and Select Element Types

Keeping the concept of the element we have developed so far, 
let’s consider the mass of the portion of the bar between nodes i
and i+1 defining element i.

The sum of the masses should approximately satisfy the 
following relationship:

   
0

L

iM x A x dx  

u(x)

x 

l1

i i+1 

l2 l3 l4
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Step 1 - Discretize and Select Element Types

Keeping the concept of the element we have developed so far, 
let’s consider the mass of the portion of the bar between nodes i
and i+1 defining element i.

Identical to the lumping technique used for mass, we will take 
the average of the loading intensity:

   
 1*

2
i iq x q x

q

u(x)

x 

l1

i i+1 

l2 l3 l4


 1

2
i iq q

Step 1 - Discretize and Select Element Types

Keeping the concept of the element we have developed so far, 
let’s consider the mass of the portion of the bar between nodes i
and i+1 defining element i.

Therefore the discrete lumped loading is:

 
 1 2 1

1 4

q q l
Q

Q1 Nodal loads Qi

Q2 Q3 Q4 Q5

    
 1 2 1 2 3 2

2 4 4

q q l q q l
Q

    
 2 3 2 3 4 3

3 4 4

q q l q q l
Q

    
 3 4 3 4 5 4

4 4 4

q q l q q l
Q

 
 4 5 4

5 4

q q l
Q

u(x)

x 

l1

i i+1 

l2 l3 l4
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Step 1 - Discretize and Select Element Types

Keeping the concept of the element we have developed so far, 
let’s consider the mass of the portion of the bar between nodes i
and i+1 defining element i.

The sum of the nodal loads should approximately satisfy the 
following relationship:

 
0

L

iQ q x dx  

u(x)

x 

l1

i i+1 

l2 l3 l4

Step 1 - Discretize and Select Element Types

Keeping the concept of the element we have developed so far, 
let’s consider the mass of the portion of the bar between nodes i
and i+1 defining element i.

The final discrete model for this system with springs, masses, 
and loads would be:

Q1 Q2 Q3 Q4 Q5

M1 M2 M3 M4 M5
k1 k2 k3 k4

u(x)

x 

l1

i i+1 

l2 l3 l4
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Step 2 - Select a Displacement Function

This completes the process of converting the continuous 
system into what is hoped to be a equivalent discrete system. 

The discretization should be implicit in the representation of 
the mass, elastic properties, and loads. 

Whether the axial model is continuous or discrete, equilibrium 
of the system (Newton’s second law) must be satisfied.  

The remaining steps of assembly, constraints, solution, and 
computation of derived variables can be best illustrated in an 
example.

Equilibrium of a Spring Mass System - Vectorial Approach

Consider a typical spring-mass system, where each spring ki is 
assumed to behave in a linear way ( F = kx ) and the loads Pi

are applied slowly to the system so that the problem is static. 

The nodal displacements and the corresponding internal forces 
for an element are:

fi

ui ui+1

ki

fi+1

   1i i i if k u u

 

    
        

1 1

1 1 1 1

i i

i i

f k k u

f k k u

   1 1i i i if k u u

or e e ef k u
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Equilibrium of a Spring Mass System - Vectorial Approach

where ke is called the element stiffness matrix, fe is the 
element force, and ue is the element displacement vector. 

This equation is a statement of the spring relationship F = kx on 
the elemental level. 

The individual ke can be assembled into the global stiffness 
matrix which represents the physical nature of the entire 
system.

e e ef k u

Introduction

Example - Consider a uniform square bar under a distributed 
loading. Use five equally-spaced nodes to discretize the 
following problem. Solve for the displacement at each node.

The discretization of the bar is:

21 in.A 

29,000E ksiu(x)

x

10 ft.

10 kips

u(x)

x

10 kips

1 2 3 4 5 

2.5 ft. 2.5 ft. 2.5 ft. 2.5 ft.

1 1

1 1 1 1

i i

i i

f k k u

f k k u 

    
        

e e ef k u
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Introduction

Since the area of the bar does not vary, the value of stiffness for each 
element is constant:

 
 1

2
i i

i

A A E
k

l

The equilibrium equations are:

1 1

1 1 1 1

ori i
e e e

i i

f k k u
f k u

f k k u 

    
         

1 1 1 1

2 1 1 2

f k k u

f k k u

    
        

Element 1:

3 33 3

3 34 4

k kf u

k kf u

    
         

Element 3:

2 22 2

3 32 2

f uk k

f uk k

    
        

Element 2:

4 44 4

5 54 4

f uk k

f uk k

    
        

Element 4:

 966.667 / .kips in
   

  



2

in.
ft.

1 1 in. 29,000

2 2.5 ft. 12

ksi

Introduction

These equations can be written in matrix form as:

where KG is called the global stiffness matrix, uG is the global 
displacement vector, and PG is the global load vector.

G G GK u P

 
 

 

1 1

1 1 2 2

2 2 3 3

3 3 4 4

4 4

k k

k k k k

k k k k

k k k k

k k

 
    

    
    
  

GK

 1 2 3 4 5
T P P P P PGP

 1 2 3 4 5
T u u u u uGu
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Introduction

A careful inspection of the global equilibrium equations reveals that each 
elemental stiffness matrix, kei, is present in the global stiffness matrix. 

Therefore the global stiffness matrix can be written as:

1 1

1 1

1

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

G

k k

k k

k

 
  

  
 
 
  

2 2

2 2 2

0 0 0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

G

k k

k k k

 
  

  
 
 
  

3 3 3

3 3

0 0 0 0 0

0 0 0 0 0

0 0 0

0 0 0

0 0 0 0 0

Gk k k

k k

 
 
 

  
  
  

4

4 4

4 4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

0 0 0

Gk

k k

k k

 
 
 

  
  
  

Introduction

These equations can be written in matrix form as:

Applying the values for the geometry, material properties, and the boundary 
conditions given for this problem result in:

1 1

2 2

3 3

4 4

5 5

1 1

1 2 1

1 2 1

1 2 1

1 1

u P

u P

k u P

u P

u P

     
                    

           
          

    
                  

           
        

1

2

3

4

5

1 0 0

0 2 1 0

1 2 1 0

1 2 1 0

1 1 10

u

u

k u

u

u

Element 1

Element 2

Element 3

Element 4

1 0u 

CIVL 7/8111  Introduction to Finite Element Method (FEM) 36/66



Introduction

The solution of these equations is:

Substituting for k the numerical values for the displacement are:

1 2 3 4 5

10 20 30 40
0u u u u u

k k k k
    

The exact solution may be determined from the following expression:

 
 

   2

10
( )

1 in. (29,000 )

k xP Px
u x dx

EA EA ksi

  1 2 30 0.0103 in. 0.0207in.u u u

 4 50.0310 in. 0.0414in.u u

1 2 30 0.0103in. 0.0207in.u u u  

4 50.0310in. 0.0414in.u u 

Introduction

Example - Consider a uniform square bar under a distributed loading. Use 
five equally-spaced nodes to discretize the following problem. Solve for the 
displacement at each node.

The discretization of the bar is:

  0 1
x

q x P
L

   
 

29,000E ksi
21A in

0 10 /P kips in

u(x)

x

10 ft.

q(x)

u(x)

x1 2 3 4 5 

2.5 ft. 2.5 ft. 2.5 ft. 2.5 ft.

q(x)

e e ef k u

1 1

i i

i i

f uk k

f uk k 

    
        
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Introduction

To handle the distributed load, we will lump the loads into each node. The 
average loading intensity is computed as:

The sum of the nodal loads should approximately satisfy the following 
relationship:

   
 1*

2
i iq x q x

q

  ( )
L

i

o

Q q x dx  0

2

P L


 1

2
i iq q

Introduction

The individual values for the distributed lumped loads are:

 
 1 2 1

1 4

q q l
Q

  1 00q x P

  0 1
x

q x P
L

   
 

      
 

2 0

2.5
2.5 ft. 1

10
q x P  00.75P

        
 

1 2 1 0
1

1.75

4 4 4

q q l P L
Q  07

64

P L
 028

256

P L
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Introduction

The individual values for the distributed lumped loads are:

 1 2 1 0
1

28

4 256

q q l P L
Q


 

   1 2 1 2 3 2 0
2

48

4 4 256

q q l q q l P L
Q

 
  

   2 3 2 3 4 3 0
3

32

4 4 256

q q l q q l P L
Q

 
  

   3 4 3 4 5 4 0
4

16

4 4 256

q q l q q l P L
Q

 
  

 4 5 4 0
5

4

4 256

q q l P L
Q


 

  0 1
x

q x P
L

   
 

Introduction

Applying the values for the geometry, material properties, and loading 
distribution conditions results in:

1

2

0
3

4

5

1 1 28

1 2 1 48

1 2 1 32
256

1 2 1 16

1 1 4

u

u
P L

k u

u

u

     
                   

           
        

Element 1

Element 2

Element 3

Element 4
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Introduction

Applying the values for the geometry, material properties, loading 
distribution, and the boundary conditions results in:

1

2

0
3

4

5

1 0 0

0 2 1 48

1 2 1 32
256

1 2 1 16

1 1 4

u

u
P L

k u

u

u

    
                  

           
        

The solution of these equations is: 

2 2
0 0

1 2 30 100 152
1,024 1,024

P L P L
u u u

AE AE
  

2 2
0 0

4 5172 176
1,024 1,024

P L P L
u u

AE AE
 

1 0u 

Introduction

Substituting the numerical values for P0, L, and k results in :

1 2 30 0.4849in. 0.7371in.u u u  

4 50.8341in. 0.8534in.u u 

The exact solution may be determined from the following expression:

2

0 0 1( ) 1 '
2

x x
AEu x P dx P x C

L L

          
   



 
 

0 01
( ) ( ) '

( )

u
u x q x dx dx

EA x AEu L P

   
 

 

  0
10

2

P L
AEu L C   
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Introduction

Substituting the numerical values for P0, L, and k results in :

1 2 30 0.4849in. 0.7371in.u u u  

4 50.8341in. 0.8534in.u u 

The exact solution may be determined from the following expression:

3 22
0 1 1 1

( )
6 2 2

P L x x x
u x

AE L L L

              
       

1 2 30 0.4784in. 0.7241in.u u u  

4 50.8147in. 0.8276in.u u 

Why the difference?

Introduction

Example - Repeat the previous problem using nine equally-spaced nodes (8 
elements) to discretize the problem. Solve for the displacement at each 
node.

The discretization of the bar is:

  0 1
x

q x P
L

   
 

29,000E ksi
21A in

0 10 /P kips in

u(x)

x

10 ft.

q(x)

e e ef k u

1 1

1 1 1 1

i i

i i

f k k u

f k k u 

    
        

u(x)

x1 2 3 4 5 

q(x)

6 7 8 9 
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Introduction

To handle the distributed load, we will lump the loads into each node. The 
average loading intensity is computed as:

The sum of the nodal loads should approximately satisfy the following 
relationship:

   1* 1

2 2
i i i i

q x q x q q
q  

 
 

0( )
2

L

i
o

P L
Q q x dx  

Introduction

The individual values for the distributed lumped loads are:

 1 2 1 0
1

14

4 256

q q l P L
Q


 

   1 2 1 2 3 2 0
2

28

4 4 256

q q l q q l P L
Q

 
  

0 0 0
3 4 524 20 16

256 256 256

P L P L P L
Q Q Q  

0 0 0 0
6 7 8 912 8 4

256 256 256 256

P L P L P L P L
Q Q Q Q   
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Introduction

Applying the values for the geometry, material properties, and loading given 
in this problem results in:

1

2

3

4

0
5

6

7

8

9

1 1 0 0 0 0 0 0 0 14

1 2 1 0 0 0 0 0 0 28

0 1 2 1 0 0 0 0 0 24

0 0 1 2 1 0 0 0 0 20

0 0 0 1 2 1 0 0 0 16
256

0 0 0 0 1 2 1 0 0 12

0 0 0 0 0 1 2 1 0 8

0 0 0 0 0 0 1 2 1 4

0 0 0 0 0 0 0 1 1 1

u

u

u

u
P L

k u

u

u

u

u

    
        
   
              

       
    
       
      





 
 
  


 
 
 
 
 
  

Element 1

Element 2

Element 3

Element 4

Element 8

Element 5

Element 6

Element 7

Introduction

Applying the boundary condition results in:

1

2

3

4

0
5

6

7

8

9

1 0 0 0 0 0 0 0 0 0

0 2 1 0 0 0 0 0 0 28

0 1 2 1 0 0 0 0 0 24

0 0 1 2 1 0 0 0 0 20

0 0 0 1 2 1 0 0 0 16
256

0 0 0 0 1 2 1 0 0 12

0 0 0 0 0 1 2 1 0 8

0 0 0 0 0 0 1 2 1 4

0 0 0 0 0 0 0 1 1 1

u

u

u

u
P L

k u

u

u

u

u

   
       
    
               

       
    
       
      






 


 
 
 
 
 
  

1 0u 
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Introduction

The solution of these equations is:
2 2

0 0
1 3 50 198 300

2,048 2,048

P L P L
u u u

AE AE
  

2 2
0 0

7 9338 344
2,048 2,048

P L P L
u u

AE AE
 

Substituting the numerical values for P0, L, and k results in :

1 3 50 0.4801in. 0.7274in.u u u  

7 90.8195in. 0.8341in.u u 

The exact solution may be determined from the following expression:

1 2 30 0.4784in. 0.7241in.u u u  

4 50.8147in. 0.8276in.u u 

How does this compare to the 4-element model?

Introduction

Problem #1 - Consider a square bar subjected to a series of concentrated 
loads. Use five equally-spaced nodes to discretize the following problem. 
Solve for the displacement at each node and compare to the exact solution.

  25 2
x

A x in
L

   
 

29,000E ksi

25l in

5P kips

u(x)

x

l 

4P 

l l l 

P 2P 3P 

CIVL 7/8111  Introduction to Finite Element Method (FEM) 44/66



Introduction

Problem #2 - Repeat Problem #1 using twice the number of elements. 
Compare your results with those obtained in Problem #1 and the exact 
solution. Explain any differences in the solutions.

  25 2
x

A x in
L

   
 

29,000E ksi

25l in

5P kips

u(x)

x

l 

4P 

l l l 

P 2P 3P 

Introduction

Problem #3 - Consider a uniform square bar under a distributed loading. 
Use five equally-spaced nodes to discretize the following problem. Solve for 
the displacement at each node.

( )u x

x( )q x

50 in

 
     

   

3

0 1
x

q x Q
L

 29,000E ksi

 21A in

0 5 /Q kips in

50 in

   
   

2

2

10 50

5010

in if x in
A x x if x ininL
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PLANE TRUSS STRUCTURES

From your experience in structural analysis you are aware of structural 
elements or members called “two force members”. 

These elements are pin connected and transmit only an axial force. There is 
no shear, bending, or torsional loads transmitted by these members in a 
structure. 

A structure composed of two-force members which behaves elastically may 
be replaced by a system of connected “springs”. Consider a single two-force 
member:

 1i i i iP k u u    1 1i i i iP k u u  

iP 1iP 

iu 1iu 

x

y

ik

PLANE TRUSS STRUCTURES

The spring stiffness constant ki is (AE/L )i, where A is an area, E is the 
modulus of elasticity, and L is the length of the member.

Consider a plane truss with four bars or members or elements:

2P

1P

Although each member in the truss will elongate (or contract) and transmit a 
tensile (or compressive) load, the displacements and the forces are in 
different directions. 
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Although each member in the truss will elongate (or contract) and transmit a 
tensile (or compressive) load, the displacements and the forces are in 
different directions. 

PLANE TRUSS STRUCTURES

, , , global coordinatesX YX Y F F

2 2,YF V

1 1,YF V

1 1,XF U

2 2,XF U

, , , element coordinatesx yx y f f

2 2,xf u

1 1,xf u

2 2,yf v

1 1,yf v

x
y

X

Y



PLANE TRUSS STRUCTURES

The global force components may be related to the elemental force 
components by:

  1 1 1X x yF f cos f sin   1 1 1Y x yF f sin f cos

, , , global coordinatesX YX Y F F

2 2,YF V

1 1,YF V

1 1,XF U

2 2,XF U

, , , element coordinatesx yx y f f

2 2,xf u

1 1,xf u

2 2,yf v

1 1,yf v

x
y

X

Y


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PLANE TRUSS STRUCTURES

The displacements may be related in a similar fashion:

  1 1 1U u cos v sin

, , , global coordinatesX YX Y F F

2 2,YF V

1 1,YF V

1 1,XF U

2 2,XF U

, , , element coordinatesx yx y f f

2 2,xf u

1 1,xf u

2 2,yf v

1 1,yf v

x
y

X

Y



  1 1 1V u sin v cos

PLANE TRUSS STRUCTURES

In matrix form these quantities can be expressed as:

The global force and global displacement vectors and R is a transformation 
matrix for rotation of an axis ( R -1 = RT ). 

A set of similar quantities can be written for the other end of the element

 1 1 1 1F Rf U Ru

  
    
   

11
1 1

11

xX

yY

fF

fF
F f

   
    
   

1 1
1 1

1 1

U u

V v
U u

  1 1
1 1 1 1f R F u R U

 
 

 
  
 

cos sin

sin cos
R
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PLANE TRUSS STRUCTURES

The stiffness matrix for the axial element in the elemental or local 
coordinates is:

Rewriting the elemental forces-displacement relationship for both x and y
components:

1 1

2 2

x

x

f uk k

f uk k

    
        

1 1

1 1

2 2

2 2

0 0

0 0 0 0

0 0

0 0 0 0

x

y

x

y

f uk k

f v

f uk k

f v

     
                       

Notice the second and fourth equations reflect the fact that only axial loads, 
in the x-direction locally, are possible in the absence of bending, shear, or 
torsion. 

PLANE TRUSS STRUCTURES

These equations may be written in partitioned form as:

To convert these relationships to global coordinates (X, Y) we apply the 
coordinate transformation R.

     
    

     
1 11 12 1

2 21 22 2

f k k u

f k k u

  1 1
1 1 1 1f R F u R U

 2 21 1 22 2f k u k u

 1 11 1 12 2f k u k u

  1 1
1 11 1 12 2F Rk R U Rk R U

  1 1
2 21 1 22 2F Rk R U Rk R U

Multiply both side by R:

 
 

1 11 1 12 2

2 21 1 22 2

f k u k u

f k u k u

    1 1 1
1 11 1 12 2R F k R U k R U

    1 1 1
2 21 1 22 2R F k R U k R U
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PLANE TRUSS STRUCTURES

Since R -1 = RT

In a more convenient form:

Writing these equations in still a more compact form gives

=
    

    
    

T T
1 111 12

T T
2 221 22

F URk R Rk R

F URk R Rk R

0 0
=

0 0

       
      

       

T
1 11 12 1

T
2 21 22 2

F k k UR R

F k k UR R

0

0

 
    

 
T R

F TkT U KU T
R

where K is the global stiffness matrix for a single two-force member or 
element. 

 
 

 
  
 

cos sin

sin cos
R

PLANE TRUSS STRUCTURES

Substituting the values of R and k and performing the multiplication gives:

In this case, K is the global stiffness matrix for a single truss element. 

In a structure composed of two-force elements, say a truss, we would have 
to assembly the element global matrices into a global matrix for the entire 
system. 

Before we discuss any problems or work any examples, let’s look at the 
effect of discretization on the form of the system stiffness matrix. 

2 2

2 2

2 2

2 2

cos

sin
k

   
    
    

   

  
    
   
 
  

K
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PROBLEM #4 – Show how to develop the global stiffness matrix for 2-D 
bar elements. 

2 2

2 2

2 2

2 2

cos

sin
k

   
    
    

   

  
    
   
 
  

K

 
    

 

0

0
T R

F TkT U KU T
R

 
 

 
  
 

cos sin

sin cos
R

PLANE TRUSS STRUCTURES

Consider the following two ways to number the nodes of the same truss:

5 6 7

1 2 3 4

2 4 6

1 3 5 7

Number Scheme #2

   
     
     
      
     
     
    

   
      
     
    
    
      
     

Number Scheme #1

CIVL 7/8111  Introduction to Finite Element Method (FEM) 51/66



PLANE TRUSS STRUCTURES

5 6 7

1 2 3 4

2 4 6

1 3 5 7

From these idealizations, it is clear that the second numbering scheme
produces a global matrix that has a smaller band width.

Generally, this type of symmetry results in quicker solutions and a reduction
in the required memory or storage capacity.

The half-band width of a symmetric set of equations for row i and column j of
the last non-zero entry may be computed as:    1

i
nb j i  

where NB (half the band width) is the maximum of the (nb)i over all rows.

Consider the following two ways to number the nodes of the same truss:

PLANE TRUSS STRUCTURES

SOLUTION PROCEDURE

1. Define a discretization of the truss 
(recall the node numbering scheme we discussed above)

2. Assemble the elemental stiffness and load matrices. 
Each element matrix should be transformed into the global system 
as previously described.

3. Apply boundary conditions or constraints to the system equations

4. Solve the system equations

5. Compute the forces in the members. Recall the force displacement 
relationship   Tf ku kT U

   1 1 2 1 2 1 0x yf k U U cos V V sin f       

   2 1 2 1 2 2 0x yf k U U cos V V sin f        
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Example - Develop the element stiffness matrices and system equations 
for the plane truss below. Assume the stiffness of each element is constant. 
Use the numbering scheme indicated. Solve the equations for the 
displacements and compute the member forces.

STEP 1.  The node numbering is given in the diagram above (Note that this 
is the optimum numbering configuration).

All elements have a constant k

1

2

3

PLANE TRUSS STRUCTURES

STEP 2.  Develop the element information

Compute the elemental stiffness matrix for each element. The general form
of the matrix is:

Member Node 1 Node 2 Elemental 
Stiffness



1 1 2 k 0

2 2 3 k 3/4

3 1 3 k /2

2 2

2 2

2 2

2 2

cos

sin
k

   
    
    

   

  
    
   
 
  

K
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For element 1:

1 1 2 2

1

1

2

2

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

U V U V

U

V
K k

U

V

 
 
 
 
 
 

For element 3:For element 2:

2 2

2 2

2 2

2 2

cos

sin
k

   
    
    

   

  
    
   
 
  

K

2 2 3 3

2

2

3

3

1 1 1 1

1 1 1 1

2 1 1 1 1

1 1 1 1

U V U V

U

Vk
K

U

V

  
   
  
   

1 1 3 3

1

1

3

3

0 0 0 0

0 1 0 1

0 0 0 0

0 1 0 1

U V U V

U

V
K k

U

V

 
  
 
  

PLANE TRUSS STRUCTURES

Assemble the global system matrix by superimposing the elemental global 
matrices.

1 1 2 2 3 3

1

1

2

2

3

3

2 0 2 0 0 0

0 2 0 0 0 2

2 0 3 1 1 1

2 0 0 1 1 1 1

0 0 1 1 1 1

0 2 1 1 1 3

U V U V U V

U

V

Uk
V

U

V

 
  
   

    
  
    

K

Element 1

Element 2Element 3
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The unconstrained (no boundary conditions satisfied) equations are:

1

1

2 1

2 2

3

3

2 0 2 0 0 0 0

0 2 0 0 0 2 0

2 0 3 1 1 1

2 0 0 1 1 1 1

0 0 1 1 1 1

0 2 1 1 1 3 0

U

V

U Pk
V P

U P

V

     
         
      

          
     
          

PLANE TRUSS STRUCTURES

STEP 3.  The displacement at nodes 1 and 3 are zero in both directions. 
Applying these conditions to the system equations gives:

1

1

2 1

2 2

3

3

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 3 1 0 0

2 0 0 1 1 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

U

V

U Pk
V P

U

V

    
    
    
    

         
    
    

    
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STEP 4. Solving this set of equations is fairly easy. The solution is:

STEP 5. Using the force-displacement relationship the force in each 
member may be computed.

3 30 0U V 

1 2 1 2
1 1 2 2

3
0 0

P P P P
U V U V

k k

 
   

   1 1 2 1 2 1 0x yf k U U cos V V sin f       

   2 1 2 1 2 2 0x yf k U U cos V V sin f        

Member Node 1 Node 2 Elemental Stiffness 

1 1 2 k 0

2 2 3 k 3/4

3 1 3 k /2

PLANE TRUSS STRUCTURES

STEP 4. Solving this set of equations is fairly easy. The solution is:

STEP 5. Using the force-displacement relationship the force in each 
member may be computed.

3 30 0U V 

1 2 1 2
1 1 2 2

3
0 0

P P P P
U V U V

k k

 
   

Member (element) 1

1 2
1 2 1 1 0x y

P P
f k P P f

k

      
 

1 2
2 1 2 2 0x y

P P
f k P P f

k

      
 
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STEP 5. Using the force-displacement relationship the force in each 
member may be computed.

Member (element) 2

1 2 1 2
2 2

31 1
2

2 2
x

P P P P
f k P

k k

                            

1 2 1 2
3 2

31 1
2

2 2
x

P P P P
f k P

k k

                            

2 0yf 

3 0yf 

PLANE TRUSS STRUCTURES

Member (element) 3
3 3

1 1

0 0

0 0
x y

x y

f f

f f

 

 

X

Y

Element 1
 2 1 2xf P P 1 1 2xf P P

x

Element 3

3 0xf

1 0xf

x
Element 2

3 22xf P

2 22xf P

x

STEP 5. Using the force-displacement relationship the force in each 
member may be computed.

CIVL 7/8111  Introduction to Finite Element Method (FEM) 57/66



PLANE TRUSS STRUCTURES

Example - Develop the element stiffness matrices and system equations 
for the plane truss below. Assume the stiffness of each element is constant. 
Use the numbering scheme indicated. Solve the equations for the 
displacements and compute the member forces.

STEP 1.  A node numbering configuration is given (note that this is the 
optimum numbering configuration).

All elements have a 
constant value of k

PLANE TRUSS STRUCTURES

Example - Develop the element stiffness matrices and system equations 
for the plane truss below. Assume the stiffness of each element is constant. 
Use the numbering scheme indicated. Solve the equations for the 
displacements and compute the member forces.

STEP 1.  A node numbering configuration is given (note that this is the 
optimum numbering configuration).

Element number

Node number

4

4
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STEP 2.  Develop the element information

Element Node 1 Node 2 Elemental Stiffness 
1 1 2 k /4

2 2 3 k 3/2

3 1 3 k 0

4 2 4 k 7/4

5 3 4 k 0

PLANE TRUSS STRUCTURES

STEP 2. Compute the elemental stiffness matrix for each element. The 
general form of the matrix is:

Element Node 1 Node 2 Elemental Stiffness 
1 1 2 k /4

2 2 3 k 3/2

3 1 3 k 0

4 2 4 k 7/4

5 3 4 k 0

2 2

2 2

2 2

2 2

cos

sin
k

   
    
    

   

  
    
   
 
  

K
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  
   
  
   

2 2 4 4

2

2

4

4

1 1 1 1

1 1 1 1

2 1 1 1 1

1 1 1 1

U V U V

U

Vk
K

U

V

 
  
 
  

2 2 3 3

2

2

3

3

0 0 0 0

0 2 0 2

2 0 0 0 0

0 2 0 2

U V U V

U

Vk
K

U

V

PLANE TRUSS STRUCTURES

For elements 1 and 2:

  
   
  
   

1 1 2 2

1

1

2

2

1 1 1 1

1 1 1 1

2 1 1 1 1

1 1 1 1

U V U V

U

Vk
K

U

V

For elements 3 and 4:

 
 
 
 
 
 

1 1 3 3

1

1

3

3

2 0 2 0

0 0 0 0

2 2 0 2 0

0 0 0 0

U V U V

U

Vk
K

U

V

PLANE TRUSS STRUCTURES

For element 5:

The global matrix for element 1 and 2 are:

3 3 4 4

3

3

4

4

2 0 2 0

0 0 0 0

2 2 0 2 0

0 0 0 0

U V U V

U

Vk
K

U

V

 
 
 
 
 
 

  
   
  
   
 
 
 
 
 
 

1 1 2 2 3 3 4 4

1

1

2

2

3

3

4

4

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

U V U V U V U V

U

V

U

Vk
U

V

U

V

K

 
 
 
 
  
 
 

 
 
 
 

1 1 2 2 3 3 4 4

1

1

2

2

3

3

4

4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 2 0 2 0 0

2 0 0 0 0 0 0 0 0

0 0 0 2 0 2 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

U V U V U V U V

U

V

U

Vk
U

V

U

V

K

CIVL 7/8111  Introduction to Finite Element Method (FEM) 60/66



PLANE TRUSS STRUCTURES

The global matrix for element 3 and 4 are:

 
 
 
  
   
 
 
 
  
 

  

1 1 2 2 3 3 4 4

1

1

2

2

3

3

4

4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1

2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1

U V U V U V U V

U

V

U

Vk
U

V

U

V

K

 
 
 
 
 
 
 
 
 
 
 
 

1 1 2 2 3 3 4 4

1

1

2

2

3

3

4

4

2 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2 2 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

U V U V U V U V

U

V

U

Vk
U

V

U

V

K

PLANE TRUSS STRUCTURES

The global matrix for element 5 is:

 
 
 
 
 
 
 
 
 
 
 
 

1 1 2 2 3 3 4 4

1

1

2

2

3

3

4

4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2 0 0 0 0 2 0 2 0

0 0 0 0 0 0 0 0

0 0 0 0 2 0 2 0

0 0 0 0 0 0 0 0

U V U V U V U V

U

V

U

Vk
U

V

U

V

K

CIVL 7/8111  Introduction to Finite Element Method (FEM) 61/66



PLANE TRUSS STRUCTURES

The unconstrained (no boundary conditions satisfied) equations are:

1

1

2

2

3

3

4

4

3 1 1 1 2 0 0 0 0

1 1 1 1 0 0 0 0 0

1 1 2 0 0 0 1 1

1 1 0 4 0 2 1 1 0

2 2 0 0 0 4 0 2 0 0

0 0 0 2 0 2 0 0 2

0 0 1 1 2 0 3 1 0

0 0 1 1 0 0 1 1 0

U

V

U P

Vk
U

V P

U

V

       
          
      
                                                  

PLANE TRUSS STRUCTURES

STEP 3. Apply the boundary conditions to the system equations:

1

1

2

2

3

3

4

4

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 4 0 2 0 0 0

2 0 0 0 0 4 0 0 0 0

0 0 0 2 0 2 0 0 2

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

U

V

U P

Vk
U

V P

U

V

    
    
    
    
                                           
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STEP 4. Solving this set of equations is fairly easy. The solution is:

STEP 5. Using the force-displacement relationship the force in each 
member may be computed.

Member (element) 1

1 1 2 2

2
0 0

P P
U V U V

k k
    

3 3 4 4

4
0 0 0

P
U V U V

k
    

2

1 1
2

2 2 2
x

P
f P P

         
   

1

1 1
2

2 2 2
x

P
f P P

         
   

PLANE TRUSS STRUCTURES

STEP 5. Using the force-displacement relationship the force in each 
member may be computed.

Member (element) 2

   2 32 4 2 2 4 2x xf P P f P P         

Member (element) 3

1 30 0x xf f 

Member (element) 4

2

1 1 3
2

2 2 2
x

P
f P P

        
   

4

1 1 3
2

2 2 2
x

P
f P P

         
   
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Member (element) 5

3 40 0x xf f 

Element Node 1 Node 2 Unode 1 Unode2 Vnode 1 Vnode 2 fx

1 1 2 0 P/k 0 -2P/k 0.707P (C)

2 2 3 P/k 0 -2P/k -4P/k 2P (T)

3 1 3 0 0 0 -4P/k 0

4 2 4 P/k 0 -2P/k 0 2.12P (C)

5 3 4 0 0 -4P/k 0 0

STEP 5. Using the force-displacement relationship the force in each 
member may be computed.

PLANE TRUSS STRUCTURES

PROBLEM #5 - Develop the element stiffness matrices and system 
equations for the plane truss below. Assume the stiffness of each element is 
constant. Use the numbering scheme indicated. Solve the equations for the 
displacements and compute the member forces.

Element number

Node number

4

4

All elements have a 
constant value of k
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PROBLEM #6 - Develop the element stiffness matrices and system 
equations for the plane truss below. Assume the stiffness of each element is 
constant. Use the numbering scheme indicated. Solve the equations for the 
displacements and compute the member forces.

Element number

Node number

4

4

PLANE TRUSS STRUCTURES

PROBLEM #7 - Consider the following two-dimensional plane truss. For the given 
node numbering scheme, determine the displacements of each node and the 
member forces. Check your results by using the method of sections and the method 
of joints from static analysis. For computational purposes assume a 
P = 10 kips, E = 29,000 ksi, L = 10 ft., and A = 4 in.2.
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End of Introduction
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