

Count Data Models

CIVL 7012/8012

In Today's Class

- Count data models
- Poisson Models
- Overdispersion
- Negative binomial distribution models
- Comparison
- Zero-inflated models
- R-implementation

Count Data

- In many a phenomena the regressand is of the count type, such as:
 - ≻ The number of patents received by a firm in a year
 - \succ The number of visits to a dentist in a year
 - ≻ The number of speeding tickets received in a year
- The underlying variable is discrete, taking only a finite nonnegative number of values.
 - \succ In many cases the count is 0 for several observations
 - Each count example is measured over a certain finite time period.

Models for Count Data

- Poisson Probability Distribution: Regression models based on this probability distribution are known as Poisson Regression Models (PRM).
- Negative Binomial Probability Distribution: An alternative to PRM is the Negative Binomial Regression Model (NBRM), used to remedy some of the deficiencies of the PRM.

THE UNIVERSITY OF **MEMPHIS**

Can we apply OLS

Dependent Variable: P90 Method: Least Squares Sample: 1 181 Included observations: 181

	Coefficient	Std. Error	t-Statistic
С	-250.8386	55.43486	-4.524925
LR90	73.17202	7.970758	9.180058
AEROSP	-44.16199	35.64544	-1.238924
CHEMIST	47.08123	26.54182	1.773851
COMPUTER	33.85645	27.76933	1.219203
MACHINES	34.37942	27.81328	1.236079
VEHICLES	-191.7903	36.70362	-5.225378
JAPAN	26.23853	40.91987	0.641217
US	-76.85387	28.64897	-2.682605

0.472911
0.448396
114.5253
2255959
-1110.296
19.29013

Mean dependent var	79.74586
S.D. dependent var	154.2011
Akaike info criterion	12.36791
Schwarz criterion	12.52695
Durbin–Watson stat	1.946344
Prob(F-statistic)	0.000000

Note: P(90) is the number of patents received in 1990 and LR(90) is the log expenditure in 1990. Other variables are self-explanatory.

Patent data from 181firms

LR 90: log (R&D Expenditure) Dummy categories

- AEROSP: Aerospace
- CHEMIST: Chemistry
- Computer: Comp Sc.
- Machines: Instrumental Engg
- Vehicles: Auto Engg.
- Reference: Food, fuel others Dummy countries
 - Japan:
- US:
- Reference: European countr

Inferences from the example (1)

- R&D have +ve influence
 - 1% increase in R&D expenditure increases the likelihood of patent increase by 0.73% ceteris paribus
- Chemistry has received 47 more patents compared to the reference category
- Similarly vehicles industry has received 191 lower patents compared to the reference category

County dummy suggests that on an average US

Inferences from the example (2)

OLS may not be appropriate as the number of

www.memphis.edu

Inferences from the example (2)

- The histogram is highly skewed to the right
- Coefficient of skewness: 3.3
- Coefficient of kurtosis: 14
- For a typical normal distribution
 - Skewness is 0 and kurtosis is 3
- We can not use OLS to work with count data

Dreamers. Thinkers. Doers.

www.memphis.edu

THE UNIVERSITY OF **MEMPHIS**

Poisson Regression Models (1)

➢ If a discrete random variable Y follows the Poisson distribution, its probability density function (PDF) is given by: $f(Y = y_i) = \Pr(Y = y_i) = \frac{e^{-\lambda_i}}{2}, \quad y_i = 0.12$

$$f(Y = y_i) = \Pr(Y = y_i) = \frac{c - x_i}{y_i!}, y_i = 0, 1, 2...$$

where $f(Y|y_i)$ denotes the probability that the discrete random variable *Y* takes non-negative integer value y_i , and λ is the parameter of the Poisson distribution.

THE UNIVERSITY OF MEMPHIS.

Dreamers. Thinkers. Doers.

Poisson Regression Models (2)

- Equidispersion: A unique feature of the Poisson distribution is that the mean and the variance of a Poisson-distributed variable are the same
- ➤ If variance > mean, there is **overdispersion**

THE UNIVERSITY OF MEMPHIS.

Poisson Regression Models (3)

> The Poisson regression model can be written as: $y_i = E(y_i) + u_i = \lambda_i + u_i$

- where the ys are independently distributed as Poisson random variables with mean λ for each individual expressed as:
- $\lambda_i = E(y_i | X_i) = \exp[B_1 + B_2 X_{2i} + \dots + B_k X_{ki}] = \exp(BX)$
- > Taking the exponential of *BX* will guarantee that the mean value of the count variable, λ , will be positive.
- For estimation purposes, the model, estimated by ML, can be written as: $y_i = \frac{e}{y_i!} + u_i, y_i = 0, 1, 2...$

Solution

• Apply maximum likelihood approach

$$L(\boldsymbol{\beta}) = \prod_{i} \frac{EXP[-EXP(\boldsymbol{\beta}\mathbf{X}_{i})][EXP(\boldsymbol{\beta}\mathbf{X}_{i})]^{y_{i}}}{y_{i}!}$$

THE UNIVERSITY OF **MEMPHIS**

Elasticity

- To provide some insight into the implications of parameter estimation results, elasticities are computed to determine the marginal effects of the independent variables.
- Elasticities provide an estimate of the impact of a variable on the expected frequency and are interpreted as the effect of a 1% change in the variable on the expected frequency λ_i

THE UNIVERSITY OF **MEMPHIS**

Elasticity-Example

- For example, an elasticity of -1.32 is interpreted to mean that a 1% increase in the variable reduces the expected frequency by 1.32%.
- Elasticities are the correct way of evaluating the relative impact of each variable in the model.
- Suitable for continuous variables
- Calculated for each individual observation

Pseudo Elasticity

• What happens for discrete (dummy variables)

 $E_{x_{ik}}^{\lambda_i} = \frac{EXP(\beta_k) - 1}{EXP(\beta_k)}$

Poisson Regression Goodness of fit measures

Likelihood ratio test statistics

THE UNIVERSITY OF

EMPHIS.

 $X^2 = -2[LL(\boldsymbol{\beta}_R) - LL(\boldsymbol{\beta}_U)],$

• Rho-square statistics $\rho^2 = 1 - \frac{LL(\beta)}{LL(0)}$

THE UNIVERSITY OF MEMPHIS

Patent Data with Poisson Model

Dependent Variable: P90

Method: ML/QML – Poisson Count (Quadratic hill climbing) Sample: 1 181

Included observations: 181

Convergence achieved after 6 iterations

Covariance matrix computed using second derivatives

	Coefficient	Std. Error	z-St	atistic	1
<u>C</u>	-0.745849	0.062138		2.00319	1
_LR90	0.865149	0.008068		07 2222	+
AEROSP	-0.796538	0.067954		1 70144	+
CHEMIST	0.774752	0.022126		1./2104	<u>+</u>
COMPUTER	0 468894	0.023120	3	3.50079	
MACHINES	0.546000	0.023939	1	9.58696	L.
VELUCITC	0.646383	0.038034	1	<u>6.99479</u>	
VERICLES		0.039176	-3	8.43249	
JAPAN	0.003893	0.026866		144922	
US	-0.418938	0.023094 -18 1404		8.14045	
R-squared Adjusted R-square S.E. of regression Sum squared resid Log likelihood Restr. log likelihood Avg. log likelihood	$\begin{array}{c} 0.675516\\ d & 0.660424\\ & 89.85789\\ & 1388804\\ & -5081.331\\ d & -15822.38\\ & -28.07365\end{array}$	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion LR statistic Prob(LR statistic)		79.7458 154.201 56.2467 56.4057 21482.1 0.00000	36 1 75 79 0
Take T DOOL					

Note: LR90 is the logarithm of R&D expenditure in 1990.

LR90 coefficient suggests that 1% Increase in R&D expenditure will Increase the likelihood of patent Receipt by 0.86%

For machines dummy The number of patents received by Machines category is 100(exp(0.6464)-1)= 90.86% compare To the reference category

See the likelihood test statistics 2(-5081.331-(-15822.38))

Shows overall model significance

Poisson Regression Coefficient Interpretation

Example 1:

 $y_i \sim Poisson(exp(2.5 + 0.18X_i))$

(e^{0.18})= 1.19

A one unit increase in X, will **increase** the average number of y by 19% Example 2:

 $y_i \sim Poisson(exp(2.5 - 0.18X_i))$

 $(e^{-0.18}) = 0.83$

A one unit increase in X, will **decrease** the average

number of y by 17%

Safety Example (1)

THE UNIVERSITY OF

MEMPHIS.

Summary of Variables in California and Michigan Accident Data

Variable Abbreviation	Variable Description	Maximum/ Minimum Values	Mean of Observations	Standard Deviation of Observations
STATE	Indicator variable for state: 0 = California; 1 = Michigan	1/0	0.29	0.45
ACCIDENT	Count of injury accidents over observation period	13/0	2.62	3.36
AADT1	Average annual daily traffic on major road	33058/2367	12870	6798
AADT2	Average annual daily traffic on minor road	3001/15	596	679
MEDIAN	Median width on major road in feet	36/0	3.74	6.06
DRIVE	Number of driveways within 250 ft of intersection center	15/0	3.10	3.90

Safety Example (2)

Poisson Regression of Injury Accident Data

THE UNIVERSITY OF

EMPHIS

Independent Variable	Estimated Parameter	t Statistic
Constant	-0.826	-3.57
Average annual daily traffic on major road	0.0000812	6.90
Average annual daily traffic on minor road	0.000550	7.38
Median width in feet	- 0.0600	- 2.73
Number of driveways within 250 ft of intersection	0.0748	4.54
Number of observations	84	
Restricted log likelihood (constant term only)	-246.18	
Log likelihood at convergence	-169.25	
Chi-squared (and associated p-value)	153.85	
	(<0.000001)	
R_{p} -squared	0.4792	
G ²	176.5	

• Mathematical ex

$$E[y_i] = \lambda_i = EXP(\beta \mathbf{X}_i)$$

 $= EXP \left(-0.83 + 0.00008(AADT1_i) \right)$

 $(+0.0005(AADT2_i) - 0.06(MEDIAN_i) + 0.07(DRIVE_i))$

.....mphis.edu

Safety Example (3)

- The model contains a constant and four variables
 - two average annual daily traffic (*AADT*) variables, median width, and number of driveways.
- The mainline AADT appears to have a smaller influence than the minor road AADT, contrary to what is expected.
- Also, as median width increases, accidents decrease.
- Finally, the number of driveways close to the intersection increases the number of intersection injury accidents.
- The signs of the estimated parameters are in line with expectation.

THE UNIVERSITY OF MEMPHIS

Dreamers. Thinkers. Doers.

Elasticity

Independent Variable	Elasticity
Average annual daily traffic on major road	1.045
Average annual daily traffic on minor road	0.327
Median width in feet	-0.228
Number of driveways within 250 ft of intersection	0.232

 1% increase in AADT of the major road increases the expected frequency by 1.045

 1% increase in median width decreases the expected frequency by -0.228

THE UNIVERSITY OF **MEMPHIS**

Limitations

- Poisson regression is a powerful tool
- But like any other model has limitations
- Three common analysis errors
 - Failure to recognize equidispersion
 - Failure to recognize if the data is truncated
 - If the data contains preponderance of zeros

Equidispersion Test (1)

Equidispersion can be tested as follows:

- ➤ 1. Estimate Poisson regression model and obtain the predicted value of Y.
- > 2. Subtract the predicted value from the actual value of *Y* to obtain the residuals, e_i .
- ➤ 3. Square the residuals, and subtract from them from actual Y.
- ➤ 4. Regress the result from (3) on the predicted value of Y squared.
- ➤ 5. If the slope coefficient in this regression is statistically significant, reject the assumption of equidispersion.

THE UNIVERSITY OF **MEMPHIS**

Equidispersion Test (2)

- ➤ 6. If the regression coefficient in (5) is positive and statistically significant, there is **overdispersion**. If it is negative, there is **under-dispersion**. In any case, reject the Poisson model. However, if this coefficient is statistically insignificant, you need not reject the PRM.
- Can correct standard errors by the method of quasimaximum likelihood estimation (QMLE) or by the method of generalized linear model (GLM).

Dreamers. Thinkers. Doers.

Patent Example Equidispersion

Dener de 11/ 11/	r cymuspersio	n of the Poisson	n model.	
Method: Least Squa Sample: 1 181 Included observatio	e: (P90-P90F)^2-F ares ons: 181	°90		
	Coefficient	Std. Error	t-Statistic	Prob.
P90F^2	0.185270	0.023545	7.868747	0.00
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelibood	0.185812 0.185812 22378.77 9.01E+10 -2069 199	Mean depende S.D. dependen Akaike info cri Schwarz criter	ent var 7593.204 t var 24801.20 terion 22.87512 ion 22.89279	4 6 2 9

Overdispersion

IE UNIVERSITY OF

MEMPHIS

- Observed variance > Theoretical variance
- The variation in the data is beyond Poisson model prediction

 $Var(Y) = \mu + \alpha * f(\mu)$, (α : dispersion parameter)

- $\alpha = 0$, indicates standard dispersion (Poisson Model)
- $\alpha > 0$, indicates over-dispersion

(Reality, Neg-Binomial)

• $\alpha < 0$, indicates under-dispersion

(Not common)

Negative Rinomial vs Poisson

Poisson vs. NB Distribution with $\mu = 1$ 0.5 4 0.3 Poisson(1) Ś NB(1,2)) 0.0 5 0.0 5 15 20 25 10 0 y Many zeroes \rightarrow Small mean \rightarrow Small count numbers **Poisson Regression** Many zeroes \rightarrow Small mean \rightarrow more variability in count numbers \rightarrow **NB** Regression

www.memphis.edu

Negative Binomial vs. Poisson

THE UNIVERSITY OF

EMPHIS

Poisson vs. NB Distribution with $\mu = 10$

www.memphis.edu

MEMPHIS. Dreamers. Thinkers. Doers. Negative Binomial Regression Model

$$y_i \sim NB (\mu_i, \alpha)$$

- $\mu = E(y|x) = Exp(\beta X_i) = e^{\beta X_i}$
- α is the over dispersion parameter
- $Var(y|x) = \mu + \alpha \mu^2$ or $(\mu + \alpha \mu, \text{ less used form})$

When α = 0, NB distribution is the same as a Poisson distribution

NB Probability Distribution

 One formulation of the negative binomial distribution can be used to model count data with over-dispersion

$$P(Y = y | \mu, \alpha) = \frac{\Gamma(y + \alpha^{-1})}{y! \Gamma(\alpha^{-1})} \left(\frac{\alpha^{-1}}{\alpha^{-1} + \mu}\right)^{\alpha^{-1}} \left(\frac{\mu}{\alpha^{-1} + \mu}\right)^{y}, Where \ y = 0, 1, 2, ...$$

THE UNIVERSITY OF MEMPHIS. Dreamers. Thinkers. Doers. Negative Binomial Regression Models For the Negative Binomial Probability Distribution, we have:

$$\sigma^2 = \mu + \frac{\mu^2}{r}; \mu > 0, r > 0$$

where σ^2 is the variance, μ is the mean and *r* is a parameter of the model.

- Variance is always larger than the mean, in contrast to the Poisson PDF.
- \succ The NBPD is thus more suitable to count data than the PPD.
- ➤ As $r \rightarrow \infty$ and p (the probability of success) \rightarrow 1, the NBPD approaches the Poisson PDF, assuming mean μ stays constant.

THE UNIVERSITY OF

NB of the Patent Data

Dependent Variable: P90

Method: ML - Negative Binomial Count (Quadratic hill climbing)

Sample: 1 181

Included observations: 181

Convergence achieved after 6 iterations

Covariance matrix computed using second derivatives

	Coefficient	Std. Error	z-Statistic
С	-0.407242	0.502841	-0.809882
LR90	0.867174	0.077165	11.23798
AEROSP	-0.874436	0.364497	-2.399022
CHEMIST	0.666191	0.256457	2.597676
COMPUTER	-0.132057	0.288837	-0.457203
MACHINES	0.008171	0.276199	0.029584
VEHICLES	-1.515083	0.371695	4.076142
JAPAN	0.121004	0.414425	0.291981
US	-0.691413	0.275377	-2.510791

Mixture Parameter

SHAPE:C(10)	0.251920	0.105485 2.388217	0.0
R-squared	0.440411	Mean dependent var	79.74586
Adjusted R-squared	0.410959	S.D. dependent var	154.2011
S.E. of regression	118.3479	Akaike info criterion	9.341994
Sum squared resid	2395063.	Schwarz criterion	9.518706
Log likelihood	-835.4504	Hannan–Quinn criter.	9.413637
Restr. log likelihood	-15822.38	LR statistic	29973.86
Avg. log likelihood	-4.615748	· Prob(LR statistic)	0.000000

THE UNIVERSITY OF **MEMPHIS**

NB of the Safety Example

Negative Binomial Regression of Injury Accident Data

Independent Variable	Estimated Parameter	t Statistic
Constant	-0.931	-2.37
Average annual daily traffic on major road	0.0000900	3.47
Average annual daily traffic on minor road	0.000610	3.09
Median width in feet	- 0.0670	-1.99
Number of driveways within 250 ft of intersection	0.0632	2.24
Overdispersion parameter, a	0.516	3.09
Number of observations	84	
Restricted log likelihood (constant term only)	-169.25	
Log likelihood at convergence	-153.28	
Chi-squared (and associated p-value)	31.95	
-	(<0.000001)	

THE UNIVERSITY OF **MEMPHIS**

Implementation in R

- Poisson Model
- glm(Y ~ X, family = poisson)
- Negative Binomial Model
- $glm.nb(Y \sim X)$
- Hurdle-Poisson Model
- hurdle(Y ~ X| X1, link = "logit", dist = "poisson") hurdle(Y ~ X| X1, link = "logit", dist = "negbin")
- Zero-Inflated Model
- $zip(Y \sim X | X1, link = "logit", dist = "poisson")$ $zinb(Y \sim X | X1, link = "logit", dist = "negbin")$

