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In Today’s Class

2

• Count data models

• Poisson Models

• Overdispersion

• Negative binomial distribution models

• Comparison

• Zero-inflated models

• R-implementation



Count Data
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 In many a phenomena the regressand is of the count type, 

such as:

The number of patents received by a firm in a year

The number of visits to a dentist in a year

The number of speeding tickets received in a year

The underlying variable is discrete, taking only a finite non-

negative number of values.

In many cases the count is 0 for several observations

Each count example is measured over a certain finite time 

period.



Models for Count Data
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 Poisson Probability Distribution: Regression models based on this 

probability distribution are known as Poisson Regression Models 

(PRM).

 Negative Binomial Probability Distribution: An alternative to PRM is 

the Negative Binomial Regression Model (NBRM), used to remedy 

some of the deficiencies of the PRM.



Can we apply OLS
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Patent data from 181firms

LR 90: log (R&D Expenditure)

Dummy categories

• AEROSP: Aerospace

• CHEMIST: Chemistry

• Computer: Comp Sc.

• Machines: Instrumental Engg

• Vehicles: Auto Engg.

• Reference: Food, fuel others

Dummy countries

• Japan: 

• US: 

• Reference: European countries



Inferences from the example (1)
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• R&D have +ve influence

– 1% increase in R&D expenditure increases the 

likelihood of patent increase by 0.73% ceteris 

paribus

• Chemistry has received 47 more patents 

compared to the reference category

• Similarly vehicles industry has received 191 

lower patents compared to the reference 

category

• County dummy suggests that on an average US 

firms received 77 few patents compared to 



Inferences from the example (2)
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• OLS may not be appropriate as the number of 

patents received by firms is usually a small 

number



Inferences from the example (2)
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• The histogram is highly skewed to the right

• Coefficient of skewness: 3.3

• Coefficient of kurtosis: 14

• For a typical normal distribution 

– Skewness is 0 and kurtosis is 3

• We can not use OLS to work with count data



Poisson Distribution
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Small mean      Small count numbers       Many zeroes              Poisson Regression

Large mean      Large count numbers      Few/none zeroes       OLS Regression

≈  Normal 

Distribution



Poisson Regression Models (1)
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 If a discrete random variable Y follows the Poisson distribution, its 

probability density function (PDF) is given by:

where f(Y|yi) denotes the probability that the discrete random 

variable Y takes non-negative integer value yi,

and λ is the parameter of the Poisson distribution.
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Poisson Regression Models (2)
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 Equidispersion: A unique feature of the Poisson distribution is that 

the mean and the variance of a Poisson-distributed variable are the 

same

 If variance > mean, there is overdispersion



Poisson Regression Models (3)
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 The Poisson regression model can be written as:

• where the ys are independently distributed as Poisson 
random variables with mean λ for each individual expressed as:

•

• i = E(yi|Xi) = exp[B1 + B2X2i + … + BkXki] = exp(BX)

 Taking the exponential of BX will guarantee that the mean value 
of the count variable, λ, will be positive.

 For estimation purposes, the model, estimated by ML, can be 
written as: , 0,1,2...
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Solution

13

• Apply maximum likelihood approach

• Log of likelihood function



Elasticity

14

• To provide some insight into the implications 

of parameter estimation results, elasticities

are computed to determine the marginal 

effects of the independent variables. 

• Elasticities provide an estimate of the impact 

of a variable on the expected frequency and 

are interpreted as the effect of a 1% change in 

the variable on the expected frequency 𝜆 𝑖



Elasticity-Example
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• For example, an elasticity of –1.32 is 

interpreted to mean that a 1% increase in the 

variable reduces the expected frequency by 

1.32%. 

• Elasticities are the correct way of evaluating 

the relative impact of each variable in the 

model.

• Suitable for continuous variables

• Calculated for each individual observation

• Can be calculated as an average for the 



Pseudo Elasticity
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• What happens for discrete (dummy variables)



Poisson Regression Goodness of 

fit measures
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• Likelihood ratio test statistics

• Rho-square statistics



Patent Data with Poisson Model
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LR90 coefficient suggests that 1% 

Increase in R&D expenditure will 

Increase the likelihood of patent

Receipt by 0.86%

For machines dummy

The number of patents received by 

Machines category is 

100(exp(0.6464)-1)= 90.86% compared 

To the reference category

See the likelihood test statistics

2(-5081.331-(-15822.38))

Shows overall model significance



Poisson Regression Coefficient Interpretation
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Example 1:

yi ~ Poisson (exp(2.5 + 0.18Xi))

(e0.18 )= 1.19

A one unit increase in X, 

will increase the average 

number of y by 19%

Example 2:

yi ~ Poisson (exp(2.5 - 0.18Xi))

(e-0.18 )= 0.83

A one unit increase in X, will 

decrease the average 

number of y by 17%



Safety Example (1)

20



Safety Example (2)
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• Mathematical expression



Safety Example (3)
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• The model contains a constant and four variables
– two average annual daily traffic (AADT) variables, median 

width, and number of driveways. 

• The mainline AADT appears to have a smaller influence 
than the minor road AADT, contrary to what is 
expected. 

• Also, as median width increases, accidents decrease. 

• Finally, the number of driveways close to the 
intersection increases the number of intersection 
injury accidents. 

• The signs of the estimated parameters are in line with 
expectation.



Elasticity
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• 1% increase in AADT of the major road 

increases the expected frequency by 1.045

• 1% increase in median width decreases the 

expected frequency by -0.228



Limitations
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• Poisson regression is a powerful tool

• But like any other model has limitations

• Three common analysis errors

– Failure to recognize equidispersion

– Failure to recognize if the data is truncated

– If the data contains preponderance of zeros



Equidispersion Test (1)
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Equidispersion can be tested as follows: 

 1. Estimate Poisson regression model and obtain the 
predicted value of Y.

 2. Subtract the predicted value from the actual value of Y to 
obtain the residuals, ei.

 3. Square the residuals, and subtract from them from actual 
Y.

 4. Regress the result from (3) on the predicted value of Y
squared.

 5. If the slope coefficient in this regression is statistically 
significant, reject the assumption of equidispersion. 



Equidispersion Test (2)
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 6. If the regression coefficient in (5) is positive and 

statistically significant, there is overdispersion.  If it is 

negative, there is under-dispersion. In any case, reject the 

Poisson model.  However, if this coefficient is statistically 

insignificant, you need not reject the PRM.

Can correct standard errors by the method of quasi-

maximum likelihood estimation (QMLE) or by the method of 

generalized linear model (GLM).



Patent Example Equidispersion
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Overdispersion
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• Observed variance >  Theoretical variance 

• The variation in the data is beyond Poisson model prediction

Var(Y)= μ+ α ∗ f(μ),    (α: dispersion parameter)

• α = 0, indicates standard dispersion   (Poisson Model)

• α > 0,  indicates over-dispersion         (Reality, Neg-Binomial)

• α < 0, indicates under-dispersion        (Not common)



Negative Binomial vs. Poisson
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Many zeroes      Small mean      Small count numbers                             Poisson Regression

Many zeroes      Small mean      more variability in count numbers          NB Regression



Negative Binomial vs. Poisson
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Many zeroes               Large mean           NB Regression 

Few\none zeroes         Large mean           OLS Regression



Negative Binomial Regression 

Model
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



NB Probability Distribution
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• One formulation of the negative binomial distribution 

can be used to model count data with over-dispersion



Negative Binomial Regression 

Models
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 For the Negative Binomial Probability Distribution, we have:

where σ2 is the variance, μ is the mean and r is a parameter of the 

model.

 Variance is always larger than the mean, in contrast to the Poisson 

PDF.

 The NBPD is thus more suitable to count data than the PPD.

 As r ∞ and p (the probability of success)  1, the NBPD 

approaches the Poisson PDF, assuming mean μ stays constant.
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NB of the Patent Data
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NB of the Safety Example
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Implementation in R
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Poisson Model

glm(Y ~ X, family = poisson)

Negative Binomial Model

glm.nb(Y ~ X)

Hurdle-Poisson Model
hurdle(Y ~ X| X1, link = “logit”, dist = “poisson”)

hurdle(Y ~ X| X1, link = “logit”, dist = “negbin”)

Zero-Inflated Model
zip(Y ~ X| X1, link = “logit”, dist = “poisson”)

zinb(Y ~ X| X1, link = “logit”, dist = “negbin”)


