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Nature of time series data

• Temporal ordering of observations; may not be 
arbitrarily reordered

• Time series data has a separate observation for each 

time period –

– e.g. annual traffic volume on a corridor, 

– census observations over multiple decades

– Population of a city over multiple years 
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Some notes on time series (1)

• One observation repeated over time

• Past can affect future, not vice versa

• Randomness?

– Not drawn from population like cross-sectional

– Not drawn randomly (outcome is not foreknown)

– So can be viewed as  random variable

• Formally a sequence of random variables are 

defined as “stochastic” or “time series 

process”
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Some notes on time series (2)

• When we collect time series data

– We collect possible outcomes of stochastic data

– (We can’t go back in time and repeat the process)

• Population

– All the elements of the stochastic process

• Sample

– Only some periods of data is used ad avaibale
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Data features

• Time periods to consider

– Daily, Weekly, Monthly, Quarterly, Annually, 

Quinquennially (every five years), Decennially (every 10 

years)

• Since not a (purely) random sample, different 

problems to consider

– Trends and seasonality will be important
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Data issues

• Stationary issue

– Loosely speaking a time series is stationary if its mean 

and standard deviation does not vary systematically over 

time

• How should we think about the randomness in time series 
data?

• The outcome of economic variables (e.g. GNP, Dow Jones) is 
uncertain; they should therefore be modeled as random 
variables

• Time series are sequences of r.v. (= stochastic processes)

• Randomness does not come from sampling from a population
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Example data

• US inflation and unemployment rates 1948-

2003

Here, there are only two time series. There may

be many more variables whose paths over time 

are observed simultaneously.

Time series analysis focuses on modeling the

dependency of a variable on its own past, and

on the present and past values of other

variables.
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Example of time series regression model

• Static models

– In static time series models, the current value of one variable is modeled as 

the result of the current values of explanatory variables

• Examples for static models

There is a contemporaneous relationship between

unemployment and inflation (= Phillips-Curve).

The current murderrate is determined by the current conviction rate, unemployment rate, 

and fraction of young males in the population.
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Finite distributed lag models
• Finite distributed lag models

– In finite distributed lag models, the explanatory variables are allowed to 

influence the dependent variable with a time lag

• Example for a finite distributed lag model

– The fertility rate may depend on the tax value of a child, but for biological and 

behavioral reasons, the effect may have a lag

Children born per 

1,000 women in year t

Tax exemption

in year t

Tax exemption

in year t-1

Tax exemption

in year t-2 
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Interpretation of coefficients: finite 

distributed lag models

• Interpretation of the effects in finite distributed lag models

• Effect of a past shock on the current value of the dep. 

variable

Effect of a transitory shock:

If there is a one time shock in a 

past period, the dep. variable will 

change temporarily by the

amount indicated by the

coefficient of the corresponding

lag.

Effect of permanent shock:

If there is a permanent shock in a past period, i.e. 

the explanatory variable permanently increases by

one unit,  the effect on the dep. variable will be

the cumulated effect of all relevant lags. This is a 

long-run effect on the dependent variable.
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Lagged effects

For example, the effect is biggest

after a lag of one period. After 

that, the effect vanishes (if the

initial shock was transitory).

The long run effect of a permanent 

shock is the cumulated effect of all 

relevant lagged effects. It does not 

vanish (if the initial shock is a per-

manent one).
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Example-1
• Example: Static Phillips curve

• Discussion of CLM assumptions
(CLM: Classical Linear Model)

Contrary to theory, the estimated Phillips 

Curve does not suggest a tradeoff 

between inflation and unemployment (t-

stat: 1.62)

A linear relationship might be restrictive, but it should be a good

approximation. Perfect collinearity is not a problem as long as unemployment

varies over time. 

Assumption.1:

The error term contains factors such 

as monetary shocks, income/demand

shocks, oil price shocks, supply

shocks, or exchange rate shocks

Assumption.2:
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Example-2

• Example: Effects of inflation and deficits on 

interest rates

Interest rate on 3-months T-bill Government deficit as percentage of GDP

A linear relationship might be restrictive, but it should be a good

approximation. Perfect collinearity will seldomly be a problem in practice. 

Assumption.1:

The error term represents

other factors that determine

interest rates in general, e.g. 

business cycle effects

Assumption.2:
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Example-3
• Using dummy explanatory variables in time series

• Interpretation

– During World War II, the fertility rate was temporarily lower

– It has been permanently lower since the introduction of the pill in 1963

Children born per 

1,000 women in year t

Tax exemption

in year t

Dummy for World War 

II years (1941-45)

Dummy for availabity of con-

traceptive pill (1963-present)
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Time series with trends
• Plot of labor productivity (output per hour of work) in the United States for 

the years 1947 through 1987

Example for a time 

series with a linear 

upward trend
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Modeling a linear time trend

Abstracting from random deviations, the dependent

variable increases by a constant amount per time unit

Alternatively, the expected value of the dependent

variable is a linear function of time
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Modeling an exponential time trend

• Example

• Representation 

Abstracting from random deviations, the dependent vari-

able increases by a constant percentage per time unit
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Example of a time series with 

exponential trend

Abstracting from

random deviations, 

the time series has

a constant growth

rate
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Interpretation in exponential trend

• How to interpret b_1 in

• For small changes in y (test at home).

• RHS is growth rate in y from period t-1 to t.

• To turn the growth rate into a percentage, we 

simply multiply by 100

• For example, if t denotes year and b_1 is .027, 

then yt grows about 2.7% per year on average
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More complex trends

• Quadratic time trend

• If a1 and a2 are +ve, then the slope of the 

trend is increasing, as is easily seen by 

computing the approximate slope (holding et

fixed)

• Trend will be different if a1 and a2 are of 

opposite sign
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Using trending variables
• Using trending variables in regression analysis

– If trending variables are regressed on each other, a spurious relationship may 

arise if the variables are driven by a common trend

– In this case, it is important to include a trend in the regression

• Example: Housing investment and prices

Per capita housing investment Housing price index

It looks as if investment and 

prices are positively related

(Counter-intuitive showing 

spurious relationship)
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Using trending variables (2)
• Example: Housing investment and prices (cont.)

• When should a trend be included?

– If the dependent variable displays an obvious trending behaviour

– If both the dependent and some independent variables have trends

– If only some of the independent variables have trends; their effect on the dep. 

var. may only be visible after a trend has been subtracted

There is no significant relationship

between price and investment

anymore

The time trend is statistically 

significant, and its coefficient 

implies an approximate 1% increase 

in invpc per year, on average
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So far…

• So far we have learned

– Simple time series

– Finite distributed lag model

– Linear trending model

– Exponential trending model

– Polynomial trending model

– Detrnding models can be possible for all the above

• Solution approach: we can still use OLS (all 

the time series assumption so far is BLUE)
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Modeling seasonality in time series

• Modelling seasonality in time series

• Data might have trends (season, week, day, hour, etc.)

• A simple method is to include a set of seasonal dummies:

=1 if obs. from december

=0 otherwise
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Further exploration (not covered in class)

• Problem of stationarity

• Auto regressive models

• Moving average models

• Autoregressive and moving average models

• Other advanced time series models


