
Discrete Choice Models

CIVL 7012/8012



Discrete Choice Introduction (1)
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• Discrete or nominal scale data often play a dominant 

role in transportation

– because many interesting analyses deal with such data.

• Examples of discrete data in transportation include 

– the mode of travel (automobile, bus, rail transit), 

– place to relocate (urban, sub-urban, local)

– lane changing (lane to left, right or stay on the same lane)

– the type or class of vehicle owned, and 

– the type of a vehicular crash (run-off-road, rear-end, head-

on, etc.).



Discrete Choice Introduction (2)
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• From a conceptual perspective, 

– such data are classified as those involving a 

behavioral choice (choice of mode or type of 

vehicle to own) or 

– those simply describing discrete outcomes of a 

physical event (type of vehicle accident).



Models for Discrete Data
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• The concept of discrete choice model is

– the individual decision maker who, faced with a 

set of feasible discrete alternatives, selects the 

one that yields greatest utility

– A set of discrete alternatives form a choice set

• For a variety of reasons the utility of any 

alternative is, from the perspective of the 

analyst, best viewed as a random variable.



Random Utility
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• In a random utility model the probability of 

any alternative i being selected by person n

from choice set Cn is given by

• Where 

– i, and j are two alternatives

– Uin->utility of alternative i as perceived by 

decision maker n

– Cn-> choice set



Random Utility

6

• We ignore situations where Uin = Ujn for any i and j

in the choice set because 

– if Uin and Ujn are continuous random variables then the 

probability Pr(Uin = Ujn) that they are equal is zero.

• Let us pursue the basic idea further by considering 

the special case where the choice set Cn contains 

exactly two alternatives. 

– Such situations lead to what are termed binary choice 

models.



Random Utility
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• For convenience we denote the choice set Cn as {i, 

j}, where, for example, 

– alternative i might be the option of driving to work and 

– alternative j would be taking the train.

• The probability of person n choosing i is

• the probability of choosing alternative j is



Binary Choice
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• Let us develop the basic theory of random utility 
models into a class of operational binary choice models

• A detailed discussion of binary models serves a number 
of purposes. 

– First, the simplicity of binary choice situations makes it 
possible to develop a range of practical models, which is 
more tedious in more complicated choice situations.

– Second, there are many basic conceptual problems that are 
easiest to illustrate in the context of binary choice. 

– Many of the solutions can be directly applied to situations 
with more than two alternatives.



Systematic component and 

disturbances
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• Uin and Ujn are random variables, we begin by 

dividing each of the utilities into two additive parts 

as follows

• Where 

– Vin and Vjn are called the systematic (or representative) 

components of the utility of i and j; 

– εin and εjn are the random parts and are called the 

disturbances (or random components).



Specification of the Systematic 

Component

10

• If we denote βT = (β1, β2, . . . , βK) as the 

(row) vector of K unknown

• When such a linear formulation is adopted, 

parameters β1,. . . ,βK are called coefficients.



Specification of the Systematic 

Component
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• A coefficient appearing in all utility functions is 

generic, 

• And a coefficient appearing in only one utility 

function is alternative specific.

• Consider a binary mode choice example, where one 

alternative is auto (A) and the other is transit (T), 

and where the utility functions are defined as



Specification of the Systematic 

Component
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• In this case it appears as though the auto utility has an 

additional term equal to 0.37. We can “convert” this model 

into the form of equation by defining our x’s as follows

• with K = 2, β1 = 0.37 is alternative specific, and β2 = −2.13 is 

generic. Thus



Specification of the Systematic Component
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• In this example, the variable xAn1 is an 

alternative specific (i.e., auto) dummy 

variable and β1 is called an alternative 

specific constant.



Linearity in Parameters
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• A model with a linear-in-parameter formulation can be 

described in a specification table. 

• A specification table has 

– as many columns as alternatives in the model (two in the specific 

context of binary choice), and 

– as many rows as coefficients (K). 

– Entry (k, i) of the table contains xik, the variable k for alternative i.



Linearity in Parameters
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• Linearity in the parameters is not as restrictive an 

assumption as one might first think. Linearity in the 

parameters is not equivalent to linearity in the 

variables z and S. 

• We allow for any function h of the variables so that 

polynomial, piecewise linear, logarithmic, 

exponential, and other transformations of the 

attributes are valid for inclusion as elements of x.



Illustrative Example
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• Let us consider the same example of choosing 
between auto and transit

• Let us consider the traveler has only information 
about time and not the cost.

• So the cost is added to the error term. 

• Depending on what unobserved variables we have 
the distribution of the error term will change. 

• Let us explore more on the functional forms 
later.



Common Binary Choice Models

17

• Let us derive operational models by introducing

• the most common binary choice models: 
– the binary probit and 

– the binary logit models.

• In each subsection we begin by making some 
assumption about the distribution of the two 
disturbances, εin and εjn, or about the difference 
between them. 

• Given one of these assumptions, we then solve for 
the probability that alternative i is chosen.



Common Binary Choice Models
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• Let us respecify the random utility model

• Where 𝜀𝑛 = 𝜀𝑖𝑛 − 𝜀𝑗𝑛

• It means that the probability for individual n to 
choose alternative i is equal to the probability 
that the difference Vin − Vjn exceeds the value of 
εn.

• We need to know how εn is distributed



Binary Logit
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• For binary logit the choice probability for 

alternative i is given by



Binary Logit Shape
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Limiting Case of Binary Logit
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• If Vin and Vjn are linear in their parameters

• μ is the scale parameter



Limiting Case of Binary Logit
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• In the case of linear-in-parameters utilities, 

the parameter μ cannot be distinguished from 

the overall scale of the β’s. 

• For convenience we generally make an 

arbitrary assumption that μ = 1. 

• This corresponds to assuming the variances of 

εin and εjn are both π2/6, implying that 

Var(εjn − εin) = π2/3.



Limiting Case of Binary Logit
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• Note that this differs from the standard 

scaling of binary probit models, where we set 

Var(εjn−εin) = 1, and it implies that the scaled 

logit coefficients are π/√3 times larger than 

the scaled probit coefficients. 

• A rescaling of either the logit or probit

utilities is therefore required when comparing 

coefficients from the two models.



Limiting Case of Binary Logit
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• that is, as μ → ∞, the choice model is 

deterministic. On the other hand,

• when μ → 0, the choice probability of i

becomes 1/2



Estimation Approach
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• The model coefficients reflect the sensitivity 

of the behavior to the variables.

• To identify them, we use data on behavioral 

choices describing individuals, what they 

faced, and what they chose.

• Therefore, we turn now to the problem of 

estimating the values of the unknown 

parameters β1,. . . ,βK from a sample of 

observations.



Estimation Approach
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• Each observation consists of the following

• Two vectors of attributes xin = h(zin, Sn) and 

xjn = h(zjn, Sn), each containing K values of 

the relevant variables.



Estimation Approach
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• Given a sample of N observations, our problem 

then becomes one of finding estimates ^β1, . . 

. , ^βK that have some or all of the desirable 

properties of statistical estimators.

• We consider in detail the most widely used 

estimation procedure — maximum likelihood. 



Maximum Likelihood
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• The maximum likelihood estimation (MLE) 

procedure is conceptually quite 

straightforward. 

• It consists in identifying the value of the 

unknown parameters such that the joint 

probability of the observed choices as 

predicted by the model is the highest possible. 

• This joint probability is called the likelihood of 

the sample.



Maximum Likelihood
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• Consider the likelihood of a sample of N  
observations assumed to be independently drawn 
from the population. 

• The likelihood of the sample is the product of the 
likelihoods (or probabilities) of the individual 
observations

• Let us define the likelihood function as 

• Where, Pn(i) and Pn(j) are functions of β1,. . . 
,βK.



Maximum Likelihood
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• Note

• The log likelihood is written as follows

• Noting that



Maximum Likelihood
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• The log-likelihood function is given by 

• Maximize the log-likelihood

• First order conditions

• Or



Maximum Likelihood
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• Each entry k of the vector ∂L(bβ)/∂β 

represents the slope of the multi-dimensional 

log likelihood function along the corresponding 

kth axis. 

• If bβ corresponds to a maximum of the 

function, all these slopes must be zero

• Essentially an optimization problem requires 

efficient techniques to solve for estimates



Example-1: Netherland Mode Choice

33

• The example deals with mode choice behavior 

for intercity travelers in the city of Nijmegen 

(the Netherlands) using revealed preference 

data. 

• The survey was conducted during 1987 for the 

Netherlands Railways to assess factors that 

influence the choice between rail and car for 

intercity travel



Example-1: Netherland Mode Choice
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Example-1: Netherland Mode Choice
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• Coefficient β1 is the alternative specific 

constant

• β2 is the coefficient of travel cost

• β3 and β4 are coefficients of car travel time.

• β5 is the coefficient of train travel time

• Coefficient β6 measures the impact on the 

utility of the train if the class preference for 

rail travel is first class.

• β7, β8 and β9 are coefficients of alternative-

specific socioeconomic variables



Example-1: Netherland Mode Choice

36

• Input data format



Binary Probit
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Binary Probit
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• P1(car) = Φ(1.6431) = 0.950.

• We compute similarly that P2(car) = 0.0792 

and P3(car) = 0.756



Binary Logit
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Comparison
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• the coefficients of the binary logit must be 

divided by π/√3 in order to be compared to 

the coefficients of the binary probit model


