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Time series modeling



Stationarity
• A stationary time series is the one with statistical properties 

(mean, variance, etc.) constant

• Assumption of stationarity makes future predictions easier

In the first figure the statistical 
properties are more or less the same 
for the series which is not true for the 
second figure

Image source: https://www.oreilly.com/library/view/hands-on-machine-
learning/9781788992282/15c9cc40-bea2-4b75-902f-2e9739fec4ae.xhtml

Time series can be weakly stationary 
or strongly stationary

• Time series need to stationary 
for modeling and making future 
predictions

https://www.oreilly.com/library/view/hands-on-machine-learning/9781788992282/15c9cc40-bea2-4b75-902f-2e9739fec4ae.xhtml


Strong and Weak stationarity

• Strong stationarity: Joint distribution of time series process 

remains the same over time 

Example:

Consider two time series Yt and Yt+s representing stock prices for a 

company at time T1, T2, T3.

P1=Probability of (Yt =200, Yt+s=180); similarly
P2=P(Yt =220, Yt+s=195);
P3=P(Yt =231, Yt+s=210);
If P1= P2= P3 then strongly stationary
Joint prabbaility distrubiton should be same for all time series

T1 T2 T3

Yt 200 220 231

Yt+s 180 195 210



Strong and Weak stationarity

Weak stationarity: Also known as Covariance stationarity

Requirements for weak stationarity

1. E(Yt )=µ Constant mean

2. E(Yt-µ) (Yt-µ)=σ2 Constant variance

3. E(Yt1-µ) (Yt2-µ)= Yt1-t2 Constant auto-variance

• All these criteria need to be fulfilled for strong stationarity.

• Requirement for joint distribution to be equal for all time 

series is not required for weak stationarity.



Non-stationary time series to stationary time series

• Non-stationary data can be differentiated to be made stationary by 

stabilizing the mean

• Differencing maybe:

Ordinary differencing

Yt
’= Yt-Yt-1 

i.e. difference between an observation and previous

Second order differencing

Yt
’’= Yt

’-Yt-1
’

Second order differencing is required when data does not appear to be 

stationary even after ordinary differencing.

Almost no data go beyond second order differencing



Non-stationary time series to stationary time series

Seasonal differencing

Yt
’= Yt-Yt-m where m= number of seasons

Seasonal differencing is the difference between observation and 

previous corresponding observation



Non-stationary time series to stationary time series
Example

• We have monthly mean anomalies in global temperature shown here.

• The plot is presented on the right.

• The time series is clearly non-stationary

Year Mean
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Non-stationary time series to stationary time series

• We differentiate the data by subtracting mean at year t by mean at 

year t-1 to obtain a stationary time series

Year Mean

1880 -0.1148

1880 -0.2 -0.0852

1881 -0.0628 0.1372

1881 -0.12 -0.0572

1882 -0.0648 0.0552

1882 -0.1 -0.0352

1883 -0.1424 -0.0424

1883 -0.21 -0.0676

1884 -0.2009 0.0091

1884 -0.28 -0.0791

1885 -0.2125 0.0675 -0.3
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Moving Average (MA) model

• MA model uses past forecast errors instead of past forecast values 

for regression. MA model can be written as:

Yt= µ+ut+θ1ut-1+ θ2ut-2…..+ θqut-q

Yt= µ+σ𝑖=1
𝑞

θiut−𝑖 +ut ……………….(1)

Here ut is the error called white noise which is normally distributed 

with mean zero and SD 1, µ is the intercept.

Lag operator: 

ut-2=Lut-1 

or, ut-s=Lsut



Moving Average (MA) model
Lag operator: 

ut-2=Lut-1 

or, ut-s=Lsut

Using the lag operator equation (1) becomes:

Yt= µ+σ𝑖=1
𝑞

θiL
iut +ut

Yt= µ+ θ(L)ut where θ(L)=1+θ1L+θ2L2+⋯+θqLq

Properties

1. E(Yt )=µ Constant mean

2. Var(Yt )= (1+θ1
2+θ2

2+θ3
2+…….+θq

2)σ2 Constant variance

3. Autocovariance is non-zero till p lags



Auto Regressive (AR) model
Auto Regressive model is when value of time series is regressed from 

previous values of same time series. 

• If we want to predict Yt using previous values (Yt-1,Yt-2) then the model is 

written as;

Yt= µ+ut+Φ1Yt-1+ Φ1Yt-2 ; Where µ is the intercept and ut is error term

Yt= µ+σ𝑖=1
𝑝

ΦiYt−i +ut

This second order autoregression is written as AR(2)

• Similar to MA model, AR model can be written using lag operator 

as:

Yt= µ+σ𝑖=1
𝑞

ΦiL
iut +ut



Auto Regressive (AR) model

Testing stationarity

AR model represented as;

Yt = µ+σ𝑖=1
𝑝

ΦiL
iut +ut can be written as:

Φ(L) Yt= µ+ ut ; 

whereΦ(L) = 1-Φ1L−Φ2L2…−ΦpLp is called autoregressive polynomial of Yt

Yt=Φ(L)-1(µ+ ut)

• For AR model to be stationary Φ(L) should converge to zero

• When Φ(L)=0; this is called characteristic equation



Checking stationarity of time series model

Consider a time series

Yt= Yt-1+ ut where ut is the error term

Yt= LYt+ ut where L is the lag of Yt

Yt(1-L)= ut

Yt(1-z)= 0; Set polynomial = 0 for characteristic equation

z=1

Therefore;

Roots of the characteristic equation should be greater than 1 

for the time series to be stationary.

Next value in the 
sequence if a 

modification of 
previous value in the 

sequence.
This is called random 

walk.



Checking stationarity of time series model

Example:

Check stationarity for the following time series

Yt= 3Yt-1+ 2.75Yt-2+0.75Yt-3+ut 

Yt= 3LYt+ 2.75L2Yt+0.75L3Yt+ut 

Yt(1-3L+ 2.75L2+0.75L3) = ut 

1-3z+ 2.75z2+0.75z3 = 0

(1-z)(1-1.5z)(1-0.5z) = 0

z = 1, 2/3, 2

All roots are not greater than 1 so it is a  non-stationary time series



Auto Regressive Moving Average (ARMA) model
ARMA Model is a combination of AR and MA models

The process can be written as:

Yt= µ+ut+θ1ut-1+ θ2ut-2+…..+ θqut-q+Φ1Yt-1+ Φ2Yt-2 +…+ ΦpYt-p 

AR terms MA terms



Autocorrelation Function (ACF) and Partial Autocorrelation 

Function

ACF:

Correlation between current observation time and observation at previous 

time

• Number of terms in MA model is determined by ACF

PACF:

Correlation between a time series with its own lagged values considering 

that they are correlated with other lagged values

• Number of terms in AR is determined using PACF



Fitting MA, AR and ARMA models using R

Step1: Identification

First, we simulate an ARMA 

model with the coefficient of 

AR model and MA models as 

0.25 and -0.75 as an example

• We plot the generated model 

using the function plot(x) to 

visualize and identify the data

• Fitting an ARMA model in R is quite straight forward using R functions.

• In this example we use R functions to simulate a time and then estimate 

AR, MA and ARMA models



Choosing between MA and AR using ACF and PACF

• To choose between MA and AR models we use the ACF and PACF plots 

• We look for less complex model with a smaller number of variables 

that can fit the time series data

• ACF and PACF help identify the number of significant variables in a 

time series

• In the next slide we present ACF, PACF charts



• Plot the ACF and PACF for the model using 

the functions:

acf() and pacf() respectively  

• Look at the number of lags crossing the 

dotted line, lower the number less 

complex is the resulting model used.

• Here, ACF has a smaller number of 

significant lags, meaning using MA 

model it will result in a simpler model 

with less number of variables.

• By visual observation we see lag(1), 

lag(2), lag(6), lag(16), lag(18) are 

significant in ACF

Lags crossing the dotted line (confidence interval) represent the lags that 

are significant.



Fitting MA, AR and ARMA model using R: Estimating MA, AR 

and ARMA
• Based on ACF and PACF we saw that the 

MA model would be the better one, 

• Nevertheless here we model single 

order MA, AR and ARMA using the 

function arima() to give you an idea of 

the modeling approach

• The function outputs the coefficients of 

the model along with log-likelihood and 

AIC values

• Note that all models used here are first 

order models.

1

2

3

1 Fits first order AR model

2 Fits first order MA model

3 Fits first order ARMA model



Fitting ARMA model using R: Estimating MA, AR and ARMA

AR 
model

MA 
model

ARMA 
model

• Model selection can be 
based on AIC values 
with low AIC being 

selected
• Here ARMA (1,1) seems 

to be the better model 
based on AIC values

• Furthermore higher 
order models can be 

experimented with to 
find the best model for 

the time series  



Fitting ARMA model using R: Diagnostic checking

For ARMA(1,1) we see no 
clustering of residuals.

ACF of residuals is also within 
the confidence interval

R function tsdiad can be used to 
create residual plots to assess 

model accuracy

ARMA(1,1) is fit for this time 
series


