In-class problems – Regression and Application

CIVL 7012/8012: Probabilistic Methods for Engineers

Question 1: (Reference Problem 1) For the same 10 zones, conduct three sets of multiple regression using an appropriate software as follows:

- a. Between Y and X_2 and X_3
- b. Between Y and X_2 , X_3 and X_4
- c. Between Y and $\ln X_1$
- d. Between Y and X_1

Provide a brief description of the ANOVA, standard error of the estimate, R^2 -value and tstatistics. Also check the results of your manual analysis in problem 1a) with the computer solution (d above).

Which one of the four equations would you recommend and why?

Zone No.		Peak-hour			
	Total (X ₁)	Manufacturing (X ₂)	Retail & Services (X ₃)	Other (X ₄)	Trips Attracted (Y)
1	9,220	6,600	2,500	120	9,500
2	2,045	125	1,905	15	2,200
3	574	228	87	259	330
4	127	0	127	0	153
5	3,850	2,750	800	300	3,960
6	995	105	805	85	1,200
7	223	165	58	0	240
8	36	6	30	0	55
9	2,250	1,560	515	175	2,100
10	209	36	173	0	230

Question-2: Use an appropriate software package to calibrate a model of the form $10^{y} = AX^{B}$.

X:	45	6	25	11	5	16	19	11	15	22
Y:	1.5	4.1	2.1	2.7	4.1	2.1	2.5	2.8	1.9	2.0

Question-3: Data shown relating to the daily person-trip productions per dwelling unit (Y) and residential density (X) dwelling units per acre. Use an appropriate software package to calibrate a model of the form $Y = (a + bX)^{-1}$.

X:	3.5	6.5	4.0	2.3	6.2	3.0	4.4	3.3	6.0
Y:	31.0	11.0	45.0	68.0	11.0	22.0	43.0	35.0	11.0

Question-4: See the binary choice problem description in Excel