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Multiple Regression Analysis (MLR)
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• Allows us to explicitly control for many factors those 

simultaneously affect the dependent variable

• This is important for 

– examining theories 

– assessing various policies of independent variables

• MLR can accommodate many independent variables 

that may be correlated with the dependent variable 

we can infer causality.

– In such instances simple regression analysis may be 

misleading or underestimate the model strength



MLR Motivation
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• Incorporate more explanatory factors into the 

model

• Explicitly hold fixed other factors that 

otherwise would be in u

• Allow for more flexible functional forms

• Can take as many as independent variables



MLR Notation

4

• Explains “y” in terms of x1, x2, …,xk

Dependent variable,

explained variable,

response variable,…
Independent variables,
explanatory variables,
regressors,…

Error term,
disturbance,
unobservables,…

Intercept Slope parameters



MLR Example-1
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• Wage equation

Hourly wage Years of education Labor market experience

All other factors…

Now measures effect of education explicitly holding experience fixed



MLR Example-2
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• Average test score, student spending, and 

income

Average standardized

test score of school

Other factors

Per student spending

at this school

Average family income

of students at this school



MLR Example-3
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 Example: Family income and family consumption

 Model has two explanatory variables: inome and income squared

 Consumption is explained as a quadratic function of income

 One has to be very careful when interpreting the coefficients:

Family consumption

Other factors

Family income Family income squared

By how much does consumption

increase if income is increased

by one unit?

Depends on how 
much income is 
already there



MLR Example-4
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 Example: CEO salary, sales and CEO tenure

 Model assumes a constant elasticity relationship between CEO salary 

and the sales of his or her firm

 Model assumes a quadratic relationship between CEO salary and his or 

her tenure with the firm

 Meaning of linear regression

 The model has to be linear in the parameters (not in the variables)

Log of CEO salary Log sales Quadratic function of CEO tenure with firm
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Parallels with Simple Regression

• b0 is still the intercept

• b1 to bk all called slope parameters

• u is still the error term (or disturbance)

• Still need to make a zero conditional mean 
assumption, so now assume that

• E(u|x1,x2, …,xk) = 0

• Still minimizing the sum of squared residuals, 
so have k+1 first order conditions
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Interpreting Multiple Regression (1)
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Interpreting Multiple Regression (2)
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 Interpretation of the multiple regression model

 The multiple linear regression model manages to hold the values     of 

other explanatory variables fixed even if, in reality, they are 

correlated with the explanatory variable under consideration

 Ceteris paribus-interpretation

 It has still to be assumed that unobserved factors do not change if the 

explanatory variables are changed

By how much does the dependent variable change if the j-th
independent variable is increased by one unit, holding all 
other independent variables and the error term constant



MLR Estimation (1)
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OLS Estimation of the multiple regression model

 Random sample

 Regression residuals

 Minimize sum of squared residuals

Minimization will be carried out by computer



MLR Estimation (2)
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• Estimates can be derived from the first order 

conditions Properties of OLS on any sample of data

 Fitted values and residuals

 Algebraic properties of OLS regression

Fitted or predicted values Residuals

Deviations from regression

line sum up to zero

Correlations between

deviations and regressors are

zero

Sample averages of y and of

the regressors lie on regression

line



Goodness-of-fit (1)
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Goodness-of-fit (2)
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How do we think about how well our 
sample regression line fits our sample data?

Can compute the fraction of the total sum 
of squares (SST) that is explained by the 
model, call this the R-squared of regression

R2 = SSE/SST = 1 – SSR/SST
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More about R-squared

• R2 can never decrease when another 

independent variable is added to a regression, 

and usually will increase

• Because R2 will usually increase with the 

number of independent variables, it is not a 

good way to compare models



Assumptions on MLR (1)
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 Standard assumptions for the multiple regression model

 Assumption MLR.1 (Linear in parameters)

 Assumption MLR.2 (Random sampling)

In the population, the relation-

ship between y and the expla-

natory variables is linear

The data is a random sample 
drawn from the population

Each data point therefore follows the population equation



Assumptions on MLR (2)
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Standard assumptions for the multiple regression model (cont.)

Assumption MLR.3 (No perfect collinearity)

Remarks on MLR.3

The assumption only rules out perfect collinearity/correlation bet-

ween explanatory variables; imperfect correlation is allowed

If an explanatory variable is a perfect linear combination of other 

explanatory variables it is superfluous and may be eliminated

Constant variables are also ruled out (collinear with intercept)

„In the sample (and therefore in the population), none
of the independent variables is constant and there are
no exact relationships among the independent variables“



Assumptions on MLR (3)
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 Standard assumptions for the multiple regression model (cont.)

 Assumption MLR.4 (Zero conditional mean)

 In a multiple regression model, the zero conditional mean assumption 

is much more likely to hold because fewer things end up in the error

The value of the explanatory variables 

must contain no information about the

mean of the unobserved factors



Assumptions on MLR (4)
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 Discussion of the zero mean conditional assumption

 Explanatory variables that are correlated with the error term are 

called endogenous; endogeneity is a violation of assumption MLR.4

 Explanatory variables that are uncorrelated with the error term are 

called exogenous; MLR.4 holds if all explanat. var. are exogenous

 Exogeneity is the key assumption for a causal interpretation of the 

regression, and for unbiasedness of the OLS estimators

 Theorem 3.1 (Unbiasedness of OLS)

 Unbiasedness is an average property in repeated samples; in a given 

sample, the estimates may still be far away from the true values



MLR Unbiasedness
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Population model is linear in parameters:  
y = b0 + b1x1 + b2x2 +…+ bkxk + u

We can use a random sample of size n, 
{(xi1, xi2,…, xik, yi): i=1, 2, …, n}, from the 
population model,  so that the sample model 
is yi = b0 + b1xi1 + b2xi2 +…+ bkxik + ui

E(u|x1, x2,… xk) = 0, implying that all of the 
explanatory variables are exogenous

None of the x’s is constant, and there are no 
exact linear relationships among them
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Simple vs Multiple Reg Estimate
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Including /Omitting Irrelevant Variables
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Including irrelevant variables in a regression model

Omitting relevant variables: the simple case

= 0 in the populationNo problem because                             .

However, including irrevelant variables may increase sampling variance.

True model (contains x1 and x2)

Estimated model (x2 is omitted) 
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Too Many or Too Few Variables

• What happens if we include variables in our 
specification that don’t belong?

• There is no effect on our parameter estimate, 
and OLS remains unbiased

• What if we exclude a variable from our 
specification that does belong?

• OLS will usually be biased 



Summary of Direction Bias
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Corr(x1, x2) > 0 Corr(x1, x2) < 0

b2 > 0 Positive bias Negative bias

b2 < 0 Negative bias Positive bias
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Omitted Variable Bias Summary

• Two cases where bias is equal to zero

 b2 = 0, that is x2 doesn’t really belong in model

– x1 and x2 are uncorrelated in the sample

• If correlation between x2 , x1 and x2 , y is the 
same direction, bias will be positive

• If correlation between x2 , x1 and x2 , y is the 
opposite direction, bias will be negative
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The More General Case

• Technically, can only sign the bias for the 
more general case if all of the included x’s are 
uncorrelated

• Typically, then, we work through the bias 
assuming the x’s are uncorrelated, as a useful 
guide even if this assumption is not strictly 
true



• More on goodness-of-fit and selection of regressors

• General remarks on R-squared

– A high R-squared does not imply that there is a causal interpretation

– A low R-squared does not preclude precise estimation of partial 

effects

• Adjusted R-squared

– What is the ordinary R-squared supposed to measure?

Goodness-of-fit: Adjusted R-square (1)



• Adjusted R-squared (cont.)

– A better estimate taking into account degrees of freedom would be

– The adjusted R-squared imposes a penalty for adding new regressors

– The adjusted R-squared increases if, and only if, the t-statistic of a 

newly added regressor is greater than one in absolute value

• Relationship between R-squared and adjusted R-squared

Correct degrees of freedom

of nominator and

denominator

The adjusted R-squared

may even get negative

Goodness-of-fit: Adjusted R-square (2)



• Using adjusted R-squared to choose between nonnested models

– Models are nonnested if neither model is a special case of the other

– A comparison between the R-squared of both models would be unfair 

to the first model because the first model contains fewer parameters

– In the given example, even after adjusting for the difference in 

degrees of freedom, the quadratic model is preferred

Goodness-of-fit: Adjusted R-square (3)



• Incorporating nonlinearities: Semi-logarithmic form

• Regression of log wages on years of eduction

• This changes the interpretation of the regression coefficient:

Natural logarithm of wage

Percentage change of wage

… if years of education

are increased by one year

Incorporating Non-linearities in SLR



• Fitted regression

The wage increases by 8.3 % for

every additional year of education

(= return to education)

For example:

Growth rate of wage is 8.3 %

per year of education

Incorporating Non-linearities in SLR



• Incorporating nonlinearities: Log-logarithmic form

• CEO salary and firm sales

• This changes the interpretation of the regression coefficient:

Natural logarithm of CEO salary

Percentage change of salary

… if sales increase by 1 % 

Natural logarithm of his/her firm‘s sales

Logarithmic changes are

always percentage changes

Incorporating Non-linearities in SLR



Introducing Quadratic Forms

• 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2

• When beta1 >0; and beta2<0, then

• 𝑥∗ =
𝛽1

−2𝛽2

Source: Woolridge, Introductory Econometrics: A Modern Approach 


