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Discrete Choice Introduction (1)
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• Discrete or nominal scale data often play a dominant 

role

– because many interesting analyses deal with such data.

• Examples of discrete data include 

– the mode of travel (automobile, bus, rail transit), 

– place to relocate (urban, sub-urban, local)

– lane changing (lane to left, right or stay on the same lane)

– the type or class of vehicle owned, and 

– the type of a vehicular crash (run-off-road, rear-end, head-

on, etc.).
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Discrete Choice Introduction (2)
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• From a conceptual perspective, 

– such data are classified as those involving a 

behavioral choice (choice of mode or type of 

vehicle to own) or 

– those simply describing discrete outcomes of a 

physical event (type of vehicle accident).
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Models for Discrete Data
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• The concept of discrete choice model is

– the individual decision maker who, faced with a 

set of feasible discrete alternatives, selects the 

one that yields greatest utility

– A set of discrete alternatives form a choice set

• For a variety of reasons the utility of any 

alternative is, from the perspective of the 

analyst, best viewed as a random variable.
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Random Utility
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• In a random utility model the probability of 

any alternative i being selected by person n

from choice set Cn is given by

• Where 

– i, and j are two alternatives

– Uin->utility of alternative i as perceived by 

decision maker n

– Cn-> choice set
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Random Utility
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• We ignore situations where Uin = Ujn for any i and j

in the choice set because 

– if Uin and Ujn are continuous random variables then the 

probability Pr(Uin = Ujn) that they are equal is zero.

• Let us pursue the basic idea further by considering 

the special case where the choice set Cn contains 

exactly two alternatives. 

– Such situations lead to what are termed binary choice 

models.
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Random Utility
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• For convenience we denote the choice set Cn as {i, 

j}, where, for example, 

– alternative i might be the option of driving to work and 

– alternative j would be taking the train.

• The probability of person n choosing i is

• the probability of choosing alternative j is
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Binary Choice
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• Let us develop the basic theory of random 
utility models into a class of operational 
binary choice models

• A detailed discussion of binary models serves a 
number of purposes. 

– For simplicity (like learning SLR before MLR).

– Basic concepts can be illustrated in the context of 
binary choice. 

– Many of the solutions can be directly applied to 
situations with more than two alternatives.
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Systematic component and 

disturbances
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• Uin and Ujn are random variables, we begin by 

dividing each of the utilities into two additive parts 

as follows

• Where 

– Vin and Vjn are called the systematic (or representative) 

components of the utility of i and j; 

– εin and εjn are the random parts and are called the 

disturbances (or random components).
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Specification of the Systematic 

Component
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• If we denote βT = (β1, β2, . . . , βK) as the 

(row) vector of K unknown

• When such a linear formulation is adopted, 

parameters β1,. . . ,βK are called coefficients.
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Specification of the Systematic 

Component
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• A coefficient appearing in all utility functions is 

generic, 

• And a coefficient appearing in only one utility 

function is alternative specific.

• Consider a binary mode choice example, where one 

alternative is auto (A) and the other is transit (T), 

and where the utility functions are defined as
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Specification of the Systematic 

Component
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• In this case it appears as though the auto utility has an 

additional term equal to 0.37. We can “convert” this model 

into the form of equation by defining our x’s as follows

• with β1 = 0.37 is alternative specific, and β2 = −2.13 is 

generic. Thus



13

Specification of the Systematic Component
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• In this example, the variable xAn1 is an 

alternative specific (i.e., auto) dummy 

variable and β1 is called an alternative 

specific constant.



14

Linearity in Parameters
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• A model with a linear-in-parameter formulation can be 

described in a specification table. 

• A specification table has 

– as many columns as alternatives in the model (two in the specific 

context of binary choice), and 

– as many rows as coefficients (K). 

– Entry (k, i) of the table contains xik, the variable k for alternative i.
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Linearity in Parameters
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• Linearity in the parameters is not as restrictive an 

assumption as one might first think. Linearity in the 

parameters is not equivalent to linearity in the 

variables z and S. 

• We allow for any function h of the variables so that 

polynomial, piecewise linear, logarithmic, 

exponential, and other transformations of the 

attributes are valid for inclusion as elements of x.
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Illustrative Example-1
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• Let us consider the same example of choosing 
between auto and transit

• Let us consider the traveler has only information 
about time and not the cost.

• So the cost is added to the error term. 

• Depending on what unobserved variables we have 
the distribution of the error term will change. 

• Let us explore more on the functional forms 
later.
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Common Binary Choice Models
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• Let us derive operational models by introducing

• the most common binary choice models: 
– the binary probit and 

– the binary logit models.

• In each subsection we begin by making some 
assumption about the distribution of the two 
disturbances, εin and εjn, or about the difference 
between them. 

• Given one of these assumptions, we then solve for 
the probability that alternative i is chosen.
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Common Binary Choice Models
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• Let us re-specify the random utility model

• Where 𝜀𝑛 = 𝜀𝑖𝑛 − 𝜀𝑗𝑛

• It means that the probability for individual n to 
choose alternative i is equal to the probability 
that the difference Vin − Vjn exceeds the value of 
εn.

• We need to know how εn is distributed
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Binary Logit
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• For binary logit the choice probability for 

alternative i is given by
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Binary Logit Shape

20



21

Limiting Case of Binary Logit
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• If Vin and Vjn are linear in their parameters

• μ is the scale parameter
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Estimation Approach
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• Each observation consists of the following

• Two vectors of attributes xin = h(zin, Sn) and 

xjn = h(zjn, Sn), each containing K values of 

the relevant variables.
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Estimation Approach
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• Given a sample of N observations, our problem 

then becomes one of finding estimates ^β1, . . 

. , ^βK that have some or all of the desirable 

properties of statistical estimators.

• We consider in detail the most widely used 

estimation procedure — maximum likelihood. 
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Maximum Likelihood
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• Consider the likelihood of a sample of N  
observations assumed to be independently drawn 
from the population. 

• The likelihood of the sample is the product of the 
likelihoods (or probabilities) of the individual 
observations

• Let us define the likelihood function as 

• Where, Pn(i) and Pn(j) are functions of β1,. . . 
,βK.
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Maximum Likelihood

30

• Note

• The log likelihood is written as follows

• Noting that
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Maximum Likelihood
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• The log-likelihood function is given by 

• Maximize the log-likelihood

• First order conditions
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Maximum Likelihood
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• Each entry k of the vector ∂L(bβ)/∂β 

represents the slope of the multi-dimensional 

log likelihood function along the corresponding 

kth axis. 

• If bβ corresponds to a maximum of the 

function, all these slopes must be zero

• Essentially an optimization problem requires 

efficient techniques to solve for estimates
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Example-2: Netherland Mode Choice
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• The example deals with mode choice behavior 

for intercity travelers in the city of Nijmegen 

(the Netherlands) using revealed preference 

data. 

• The survey was conducted during 1987 for the 

Netherlands Railways to assess factors that 

influence the choice between rail and car for 

intercity travel
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Example-2: Netherland Mode Choice
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• Coefficient β1 is the 

alternative specific constant

• β2 is the coefficient of travel 

cost

• β3 and β4 are coefficients of 

car travel time.

• β5 is the coefficient of train 

travel time

• Coefficient β6 measures the 

impact on the utility of the 

train if the class preference 

for rail travel is first class.

• β7, β8 and β9 are coefficients 

of alternative-specific 

socioeconomic variables
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Example-2: Netherland Mode Choice
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• Input data format
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Binary Logit
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Estimation Results Goodness-of-fit

• Number of parameters: The number K of estimated 

parameters

• Number of observations:  The number N of 

observations actually used for the estimation.

• Null log likelihood: the value L(0) of the log 

likelihood function when all the parameters are zero.

• Constant log likelihood:  the value L(c) of the log 

likelihood function when only an alternative-specific 

constant is included
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Estimation Results Goodness-of-fit
• Final log likelihood: the value of the log 

likelihood function at its maximum, L(β_hat).

• Likelihood ratio:  test statistic used to test the 
null hypothesis that all the parameters are zero, 
and 
– is defined as −2(L(0) − L(^β)).
– asymptotically distributed as χ2 with K degrees of freedom

• Rho-square:  Denoted by ρ2, it is an informal 
goodness-of-fit index that measures the fraction 
of an initial log likelihood value explained by the 
model. 
– It is defined as 1 − (L(^β)/L(0)).
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Estimation Results Goodness-of-fit41

• Adjusted rho-square: Denoted ¯ρ2, it is another informal 

goodness-of-fit measure that is similar to ρ2 but corrected for 

the number of parameters estimated. 

– this measure is defined as ¯ρ2 = 1 − (L(^β) − K)/L(0).

• Value:  Estimated value bβk.

• Std. Err.:  Estimated standard error.

• t-test:  Ratio between the estimated value of the parameter 

and the estimated standard error.

• p-value: Probability of obtaining a t-test at least as large at 

the one reported, given that the true value of the parameter 

is 0.
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Estimation Results Goodness-of-fit42

• Let us take the same example of choice of 

mode between auto and transit

Example-1: Two parameters
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Standard Representation of Results (1)43

• Binary logit
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Standard Representation of Results (2)

• Binary logit Example-2: Nine Parameters
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Example-3 (Spreadsheet version)
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Example-4 (Spreadsheet version)
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More in depth (not covered in course)

• More than two choices

– Multinomial logit 

• Some options are related 

– nested logit

• Options are correlated

– Cross nested logit

• Advanced concepts

– Mixed logit


