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Discrete Choice Introduction (1)

e Discrete or nominal scale data often play a dominant
role

because many interesting analyses deal with such data.

o Examples of discrete data include

the mode of travel (automobile, bus, rail transit),

place to relocate (urban, sub-urban, local)

lane changing (lane to left, right or stay on the same lane)
the type or class of vehicle owned, and

the type of a vehicular crash (run-off-road, rear-end, head-
on, etc.).
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Discrete Choice Introduction (2)

e From a conceptual perspective,

- such data are classified as those involving a
behavioral choice (choice of mode or type of
vehicle to own) or

- those simply describing discrete outcomes of a
physical event (type of vehicle accident).
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Models for Discrete Data

e The concept of discrete choice model is

- the individual decision maker who, faced with a
set of feasible discrete alternatives, selects the
one that yields greatest utility

- A set of discrete alternatives form a choice set

e For a variety of reasons the utility of any
alternative is, from the perspective of the
analyst, best viewed as a random variable.
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Random Utility

e In a random utility model the probability of
any alternative i being selected by person n
from choice set Cn is given by

P(ilCy) = Pr(Upy > Uy, ¥j € Cy)-

e Where

- i, and j are two alternatives

- Uin->utility of alternative i as perceived by
decision maker n

- Cn-> choice set
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Random Utility

« We ignhore situations where Uin = Ujn for any i and j
in the choice set because

- if Uin and Ujn are continuous random variables then the
probability Pr(Uin = Ujn) that they are equal is zero.

e Let us pursue the basic idea further by considering
the special case where the choice set Cn contains
exactly two alternatives.

- Such situations lead to what are termed binary choice
models.
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Random Utility

e For convenience we denote the choice set Cn as {i,
j}, where, for example,
- alternative i might be the option of driving to work and
- alternative j would be taking the train.

e The probability of person n choosing i is

Pu “fk:' — I}Trxuin = Uj11]1

o the probability of choosing alternative j is

P.(j)=T1—=P.(i].
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Binary Choice

e Let us develop the basic theory of random
utility models into a class of operational
binary choice models

e A detailed discussion of binary models serves a
number of purposes.
- For simplicity (like learning SLR before MLR).

- Basic concepts can be illustrated in the context of
binary choice.

- Many of the solutions can be directly applied to
situations with more than two alternatives.
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ystematic component anc

disturbances

e Uin and Ujn are random variables, we begin by

dividing each of the utilities into two additive parts
as follows

uin
Us,

7 -

1""ir1 - Einy
7

Lin T Ejne

e Where

- Vin and Vjn are called the systematic (or representative)
components of the utility of i and j;

- €in and €jn are the random parts and are called the
disturbances (or random components).
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Specification of the Systematic
Component

 If we denote B" = (B1, B2, . .., BK) as the
(row) vector of K unknown

1|IIrfIr'm [xiun E']
1|'f"rin |.r-'-'{j111 E']

E’T Xin

B1Xin1 + P2Xin2 + - - + BrXink,
[_?)T.‘-":-in

B1Kjr‘l| + [5;"-";1'11_’ T T thxju}q;.

e When such a linear formulation is adopted,
parameters B1,. . . ,BK are called coefficients.
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Specification of the Systematic

Component

e A coefficient appearing in all utility functions is
generic,

e And a coefficient appearing in only one utility
function is alternative specific.

e Consider a binary mode choice example, where one
alternative is auto (A) and the other is transit (T),
and where the utility functions are defined as
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« In this case it appears as though the auto utility has an
additional term equal to 0.37. We can “convert” this model
into the form of equation by defining our x’s as follows

Dreamers. Thinkers. Doers.

e systematic

XAnl = ] 3
X1 = 0,
Xan2 = tan,
Xtz = tm )

o with B1 =0.37 is alternative specific, and B2 = -2.13 is
generic. Thus
vﬁ.n — BTKIALTI.

= | BI XAn1 + [5_’:"'3'--"'=r'l;1
Vi = Blxm

le'ﬁﬂ T BL‘KTH;‘

0.37 — 2.13tan,
—  2.13ty,.

winwimemphisiedd
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Specification of the Systematic Component

 In this example, the variable xAn1 is an
alternative specific (i.e., auto) dummy
variable and B1 is called an alternative
specific constant.
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Linearity in Parameters

e A model with a linear-in-parameter formulation can be
described in a specification table.

e A specification table has
as many columns as alternatives in the model (two in the specific

context of binary choice), and

- as many rows as coefficients (K).
Entry (k, i) of the table contains xik, the variable k for alternative i.

| Auto Train
B, 037 1 0
p. -2.13 Lan t

winwimemphisiedd
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Linearity in Parameters

Linearity in the parameters is not as restrictive an
assumption as one might first think. Linearity in the
parameters is not equivalent to linearity in the
variables z and S.

We allow for any function h of the variables so that
polynomial, piecewise linear, logarithmic,
exponential, and other transformations of the
attributes are valid for inclusion as elements of x.
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[llustrative Example-1

e Let us consider the same example of choosing
between auto and transit

Usn = Bo + PBitan + PiCan,
Ur, = E'i'r. T |31C|n'

e Let us consider the traveler has only information
about time and not the cost.

e So the cost is added to the error term.

e Depending on what unobserved variables we have
the distribution of the error term will change.

e Let us explore more on the functional forms
later.
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Common Binary Choice Models

e Let us derive operational models by introducing

e the most common binary choice models:
- the binary probit and
- the binary logit models.

e In each subsection we begin by making some
assumption about the distribution of the two
disturbances, €in and €jn, or about the difference

between them.

e Given one of these assumptions, we then solve for
the probability that alternative i is chosen.
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Common Binary Choice Models

e Let us re-specify the random utility model

Pl 1] = Prle T Ein = 1"'!:.1'. 1I"Il1'1'. |
= Pri Eq 1""'I-i1-. 1""ll'i1-_ .

 Where ¢, = ¢, — ¢jp,

e |t means that the probability for individual n to

choose alternative i is equal to the probability
that the difference Vin - Vjn exceeds the value of

en.
« We need to know how &n is distributed 8
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Binary Logit

e For binary logit the choice probability for
alternative i is given by

P'I.I 1 = Prl En t 1||"Ii.'|. 1II":.iﬁ.l

= HVi— Vil
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Binary Logit Shape
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Limiting Case of Binary Logit

e If Vin and Vjn are linear in their parameters

e U is the scale parameter

= oo

= o0
W] -
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Estimation Approach

e Each observation consists of the following

An indicator variable defined as

1 if person n chose alternative 1,
Yin = T - I PP
0 if person n chose alternative j.

e Two vectors of attributes xin = h(zin, Sn) and
xjn = h(zjn, Sn), each containing K values of
the relevant variables.
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Estimation Approach

e Given a sample of N observations, our problem

then becomes one of finding estimates "B1,
, "BK that have some or all of the desirable

properties of statistical estimators.

 We consider in detail the most widely used
estimation procedure — maximum likelihood.
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Maximum Likelihood

e Consider the likelihood of a sample of N
observations assumed to be independently drawn
from the population.

e The likelihood of the sample is the product of the
likelihoods (or probabilities) of the individual
observations

e Let us define the likelihood function as

LBy, B, M HP|1=' P []]¥

. V\éhere, Pn(i) and Pn(j) are functions of B1,.
,BK.
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Maximum Likelihood

e Note

P.l1) ifyp,=1y,=0

P -'i..|1-"-'.'|.'-‘ "I'Jiu — ; -
i ntl { P-,-l'l 1 .!-..Ii.'l._;:l-"_-Jf-.__ 1.

e The log likelihood is written as follows

LiBy,...,Prl= Zlyz_r_]n[-‘nlil + yin In P (31,

e Noting that

noting that y;, = 1 — yin and PL[1) = 1 — P.{1],
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Maximum Likelihood

e The log-likelihood function is given by

CIB=L[B,....Bx) = (Y InPo(1) + (1 —y; ) In( 1 — PLi))),
| Y .J

e Maximize the log-likelihood

max () = L(E1, Bz, ... ., Br),

e First order conditions

dP.(1)/ 0P aPL0) /9Py

__ : : _I_‘I. _ L .
3 ) ;[” P MTTRLG) ) k=T....K
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Maximum Likelihood

« Each entry k of the vector oL(bB)/0B
represents the slope of the multi-dimensional
log likelihood function along the corresponding
kth axis.

e If bB corresponds to a maximum of the
function, all these slopes must be zero

e Essentially an optimization problem requires
efficient techniques to solve for estimates
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Example-2: Netherland Mode Choice

e The example deals with mode choice behavior
for intercity travelers in the city of Nijmegen
(the Netherlands) using revealed preference
data.

e The survey was conducted during 1987 for the
Netherlands Railways to assess factors that
influence the choice between rail and car for
intercity travel
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Example-2: Netherland Mode Choice

[ I-'ll'

Train

|
cost of trip by car (in Guilders)

travel time by car (hours) if
trip purpose iz work, 0 other-
wise

travel time by car (hours) if
trip purpose is not work, 0 oth-
eTWise

[

[l

| if commuter s male, 0 other-
"u:'u'ii"‘\-l"

| if commuter is the main
earner in the family, 0 other-
"f'.uii"‘\-l"

| if commuter had a fixed ar-
rival time, 0 otherwise

U

cost of trip by train (in
Guilders)

U

travel time by train (hours)

I if first class 1= preferred, O
otherwise

L}

Coefficient B1 is the
alternative specific constant

B2 is the coefficient of travel
cost

B3 and B4 are coefficients of
car travel time.

B5 is the coefficient of train
travel time

Coefficient B6 measures the
impact on the utility of the
train if the class preference
for rail travel is first class.

B7, B8 and B9 are coefficients
of alternative-specific
socioeconomic variables

winwimemphisiedd
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Example-2: Netherland Mode Choice

e Input data format

Individual 1 Individual 2 Individual 3

Train cost 40.00 7.80 100,000

Car cost 5.00 ®.33 3

Train travel time 2.50 1.75 267
Car travel time .17 2.00 2.55
Gender M I F

Trip purpose Not work Work Not work
Class Second First Second

Main earner No Yes Yes
Arrival time Variable Fixed Variable

winwimemphisiedd
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Binary Logit

[ndividual 1 Individual 2 [ndividual 3
Variables | Coef. | Value Car  Train Car  Train Car  Train
Car dummy | By 3.04 I 0 1 0 | 0
Cost B | -0.0527 5.00 40.00 5.33 7.80 3.20 10,00
Travel time by car (work) | B3 | -2.66 0 0 2 i i 0
Travel time by car (not work) | By | -2.22 1.17 0 0 I 2.55 0
Travel time by train | Bs | -0.576 0 2.50 0 1.75 0 2.67
First class dummy | Pg 0.961 0 0 0 1 i 0
Male dummy | By | -0.850 I 0 0 0 0 0
Main earner dummy | PBs 0.383 0 0 1 0 | 0
Fixed arrival time dummy | e | -0.624 [ 0 1 i i 0
Vi 06642 35504 | -2.0506 -0.4580 | -2.4072 -3.6464
P.(1) 0947 00528 | 0.0758 0.924 0.775 (.225
e e e
Pilcar) = = (0.947,

TR 2 CLpy
e 0.5642 e 3.5504

P,(train) = 1—P,;(car] = 0.0528

winwimemphisiedd
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Estimation Results Goodness-of-fit

« Number of parameters: The number K of estimated
parameters

« Number of observations: The number N of
observations actually used for the estimation.

e Null log likelihood: the value L(0) of the log
likelihood function when all the parameters are zero.

e Constant log likelihood: the value L(c) of the log
likelihood function when only an alternative-specific
constant is included
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Estimation Results Goodness-of-fit

e Final log likelihood: the value of the log
ikelihood function at its maximum, L(B_hat).

o Likelihood ratio: test statistic used to test the
nuél hypothesis that all the parameters are zero,
an
- is defined as -2(L(0) - L("B)).

- asymptotically distributed as x.with K degrees of freedom

« Rho-square: Denoted by p2, it is an informal
goodness-of-fit index that measures the fraction
of %n linitial log likelihood value explained by the
model.

- It is defined as 1 - (L("B)/L(0)).

40
q1Stedl
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Estimation Results Goodness-of-fit

Adjusted rho-square: Denoted p2, it is another informal
goodness-of-fit measure that is similar to p2 but corrected for
the number of parameters estimated.

- this measure is defined as p2 =1 - (L("B) - K)/L(0).

Value: Estimated value bBk.

Std. Err.: Estimated standard error.

t-test: Ratio between the estimated value of the parameter
and the estimated standard error.

p-value: Probability of obtaining a t-test at least as large at

the one reported, given that the true value of the parameter
is 0.
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Estimation Results Goodness-of-fit

o Let us take the same example of choice of
mode between auto and * = ¥ T S

Vi, = — 213t
Example-1: Two parameters
Number of estimated parameters 2
Number of observations : 25
L0y : -17.329
Lic) : -14.824
C(B) : -12.377
2(L00)—L(B)) : 9.904
p* o 0.286

o 0.170
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Standard Representation of Results (1)

e Binary logit

Robust
Parameter Coeff. Asympt.
number Description estimate  std. error  t-stat  p-value
1 Auto constant 0.372 0,492 0.75 045
2 Travel time -2.13 .22 -1.75  0.08

summary statistics
Number of observations — 25

C(0) 17.329
Llc) 14.824
C(B) 12.377
2L10) — £(B)] 000
ot 0.286
i 0.170

winwimemphisiedd
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Standard Representation of Results (2)

e Binary logit

Example-2: Nine Parameters

Robust

Param. Coeff. Asympt.

number [Description pstimate  std. error  t-stat  p-value
1 Car dummy 3.04 1.09 278 0.01
2 Cost -0.0527 00127 -4.17  0.00
3 Travel time bv car (work) -2.66 0.578 -4.60  0.00
I  Travel time by car (not work) -2.22 0. 499 -4.46  0.00
5 Travel time by train -0.576 0. 460 -1.25  0.21
6 First class dummy 09461 0.768 1.25  0.21
7 Male dummy -0.850 0.358 -237 0.02
& Main earner dummy 0383 0.353 .09 028
9  Fixed arrival time dummy 0,624 0.370 1G9 0.0

Summary statistics

MNumber of observations — 228
1) 158.038
Lic) 148.347
CiR) 108.836
21L101— L(B) 98.404
pt 0311
gt 0.254

WWWImemp! n1stedl
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Example-3 (Spreadsheet version)

B C D E F G H I J K L M N (o] P Q R
Modal Split Examples of Logit Model Equations: Paute + Ppus = 1
Method: Logit Model
exp(U
Inputs: Travel Time between zones, cost, etc. P 1 p( autO)
. . auto T
Outputs:  Trips for each mode of travel Cxp(Uauto) + Cxp(Ubus‘)
exp(Upus)
Logit Model: Pbus

B exp(Uauto) + Cxp(Ubus)

P; = probability of using mode i

exp(U;)
i 2j exp(Uj)

U; = Utility of using mode i

j represents different modes (Auto, HOV, Transit, etc.) Simple Utility Function:

We can use survey data to calibrate

Utility = Beta(TT)

our utility function, as seen below.

Ex-182

Calibration Process: Without modal constant

8. : Which modes they chose |

We need to find the Beta coefficient which best predicts traveler choice.

Utility of each mode:

‘Our Prediction of their Choice: |

Survey Data: T T | Log-Likelihood
Traveler Auto TT (min) Bus TT (min) Chosen Mode_Auto Chosen Mode_Bus U_Auto U_Bus SUM_Exp(U) Prob_Auto Prob_Bus LL_Auto LL_Bus
1 30 50 1 0 -1.13 -1.89 0.47 0.68 0.32 -0.38485| 0.00000
2 20 10 1 0 -0.76 0.00 1.47 0.32 0.68 -1.14116| 0.00000
3 40 30 0 1 -1.51 0.00 1.22 0.18 0.82 0.00000] -0.19912

Function Variables: Optimization Objective:

Beta -0.0378154 Obj _LL

-1.72513
]

Ex-384 | Example5 @

To find the best Beta coefficient, we use the Solver to maximize the log likelihood function.

ZZﬁftln(Pﬁ)

1

j=made P;: = Probabity of traveler t using mode j

t=traveler §&;=1if traveler t chose mode j, 0if they did not

3

H M -————+ 1309
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Example-4 (Spreadsheet version)

BH S s MaodeSplitv3.xls - Bxcel 7 @ - x
B HOME  INSERT  PAGELAYOUT — FORMULAS  DATA | REVIEW  VIEW  ADD-INS  Risk Solver Platform Sabyasachee Mishra (smishra3) ~

B3 B Qe a2mY Eh BE =X B (% o8 o

8 X K El5 Data Analysis
From From From From Other  Existing  Refresh 7| ot Fhe _ Textto Remove Dtz Consolidate V
Access Web Tet Sources= Connections  All- T Advanced

-1 Group Ungroup Subtotal
Columns Duplicates Validation - Analysis - - -
Get External Data Connections Sort & Filter Data Tools QOutline M Analysis A

WBMAX - b2 =5UM(038:P40) ~

30

31 .

32 Calibration Process: With modal constant Utllltyauto - ConSt' + Beta (TT)

33 (accounts for factors not considered in our utility .

34 function, or modal bias) Utllltybus = Beta (TT)

35

36 Survey Data:

37 Traveler Auto TT Bus TT Chosen Mode_Auto Chosen Mode Bus U_Auto U Bus SUM_Exp(U) Prob Auto Prob Bus LL Auto LL Bus

38 1 30 50 1 0 -12.92 -32.31 0.000002440 1.00 0.00 0.00000 0.00000
39 2 20 10 1 0 -6.46 -6.46 0.003124059 0.50 0.50 -0.69312 0.00000
40 3 40 30 0 1 -19.39 -19.39 0.000000008 0.50 0.50 0.00000 -0.69317
41

42 |Function Variables: Optimization Objective: We use the Solver again to maximize the log likelihood function.

43 Const. 6.46 Obj LL

44 [Beta -0.65 Eh -1.386294366]

45

46

47

48

49

50

51

52

53

54

55

SA -
Ex-182 Ex-384 Example_5

i M -——+ 15%
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More in depth (not covered in course)

e More than two choices
- Multinomial logit

e Some options are related
- nested logit

e Options are correlated
- Cross nested logit

e Advanced concepts
- Mixed logit




