

ANOVA

CIVL 7012/8012

www.memphis.edu

THE UNIVERSITY OF

ANOVA

- ANOVA = Analysis of Variance
- A statistical method used to compare means among various datasets (2 or more samples)
- Can provide summary of any regression analysis in a table called ANOVA Table
- Developed by statistician and evolutionary biologist <u>Ronald Fisher</u> in 1921

2

THE UNIVERSITY OF

ANOVA Table

- Basic Information contains Estimates of Variance
- Estimates used to answer Inferential questions of regression analysis
- Analysis of Variance and regression analysis are closely related
- Usually employed in comparisons involving several population means

Why the name, "ANOVA"

- Why Not ANOME, where ME=Means
- Although means are compared, but Comparisons are made using estimates of variances

 The ANOVA test statistics used are actually ratios of estimates of variance

THE UNIVERSITY OF **MEMPHIS**.

ANOVA vs. REGRESSION

- Independent Variables
 - ANOVA: must be treated as nominal
 - <u>REGRESSION</u>: can be of any mixture (nominal, ordinal, interval)
- ANOVA is a special case of regression analysis
- For multivariable analysis or regression, the technique is called Analysis of Covariance (ANACOVA)

FACTORS AND LEVELS

- Assume a nominal (categorical) variable with k categories:
 - Then number of dummy variables = k 1
- These (k 1) variables collectively describe the *basic* nominal variable
- The basic nominal variable is called **FACTOR**
- The different categories of the FACTOR are referred to as its LEVELS

6

THE UNIVERSITY OF **MEMPHIS**

FIXED AND RANDOM FACTORS

• RANDOM FACTOR

- Whose LEVELs may be regarded as a sample from some large population of levels
- Example, Subjects, Litters, Observers, Days, Weeks

• FIXED FACTOR

- Whose LEVELs are the only ones of interest
- Example, Gender, Age, Marital Status, Education
- BOTH: locations, treatments, drugs, exposures

THE UNIVERSITY OF

Types of ANOVA

- Several types depending on experimental designs and situations for which they have been developed
 - One way (one factor, fixed effects)
 - Two way (two factors, random effects)
 - Two way with repeated measures (two factors, random effects)
 - Fully nested (hierarchical factors)
 - Kruskal-Wallis (non-parametric one way)
 - Friedman (non-parametric two way)

8

THE PROBLEM (One Way ANOVA)

- To Determine whether the population means are all equal or not.
- Given k means (denoted as $\mu_1, \mu_{2,...,} \mu_k$), the basic null hypothesis of interest is:

$$-H_0:\mu_1=\mu_2=\cdots=\mu_k$$

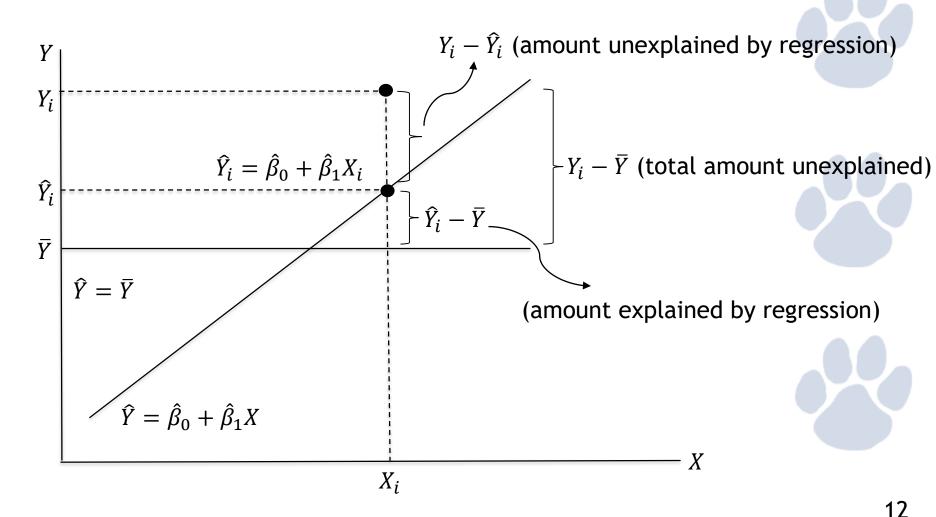
- The Alternate hypothesis is given by:
 - H_A: "The k population means are not all equal"

Assumptions (One Way ANOVA)

- All populations involved follow normal distribution
- Variance of the dependent variable is the same in each population
- Random samples have been selected from each populations or groups
- Each experimental unit sampled has been recorded with a specified dependent variable value

ANOVA Table

Source	Degrees of freedom (<i>df</i>)	Sum of Squares (SS)	Mean Square (MS)	F-value/F
Between groups/ Treatment groups/Model	k-1	SSE	$MSE = \frac{SSE}{k-1}$	MSE MSR
Within Groups/Error	N-k	SSR	$MSR = \frac{SSR}{N-k}$	
Total	N-1	SST		


- k = number of population means
- N = Total number of observations
- SSE = Sum of squares between groups (Explained)
- SSR = Sum of squares within groups/Residual sum of squares/Error sum of Squares
- SST = Total sum of squares
- *MST* = *Mean square Treatment/Mean Square between groups*
- MSE = Mean square Error

11

THE UNIVERSITY OF **MEMPHIS**

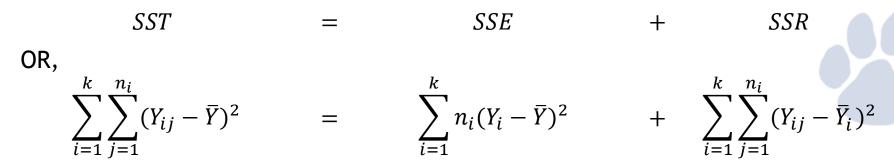
Partition of Variance

Partition of Variance (Cont.)

=

- Total unexplained = variation
 - Variation in all observations

- Variation due to regression
- Variation between each observation and its group mean


Unexplained residual variation

+

+

Variation between each group mean and the overall mean

In other words,

THE UNIVERSITY OF **MEMPHIS**

F Statistics

- For a one-way ANOVA, the test statistic is equal to the ratio of MST and MSE
- This ratio is known to follow an F distribution
- The test statistics is calculated as, $F = \frac{MSE}{MSP}$
- If F (calculated) > F (Critical)
 - Reject Null hypothesis
- If F (calculated) \leq F (Critical)
 - Fail to reject Null hypothesis

THE UNIVERSITY OF

F Distribution

- F distribution table is used to find the critical value
- Required:
 - Degrees of freedom of Numerator (MSE)
 - Degrees of freedom of Denominator (MSR)
 - Value of alpha (0.05, 0.1, ...)
- See supplemental table on the website

THE UNIVERSITY OF **MEMPHIS**

EXAMPLE

• Suppose the National Transportation Safety Board (NTSB) wants to examine the safety of compact cars and full-size cars. It collects a sample of three for each of the treatments (cars types). Using the hypothetical data provided below, test whether the mean pressure applied to the driver's head during a crash test is equal for each types of car. Use $\alpha = 5\%$

Compact cars	Full size cars
643	484
655	456
702	402

THE UNIVERSITY OF **MEMPHIS**

EXAMPLE (Cont.)

• <u>Step 1</u>

State the null and alternate hypothesis

- $H_0: \mu_1 = \mu_2$
- H_A: Atleast one mean pressure is not ststistically equal
- <u>Step 2</u>
 - Calculate the appropriate test statistic (Find sum of squares, mean squares) and critical value and then compare
- Example shown in Excel file (example_ANOVA.xlsx)

Example-1: Complete ANOVA Table

Source	SS	df	MS	F
Explained	18.9	3		
Error	72.0	16		
Total				

The Sum of Squares and Degrees of Freedom are given. Complete the table.

THE UNIVERSITY OF

Example-1: Answer					
Source	SS	df	MS	F	
Explained	18.9	3	6.30	1.40	
Error	72.0	16	4.50		
Total	90.9	19	4.78		

www.memphis.edu

THE UNIVERSITY OF MEMPHIS.

Dreamers. Thinkers. Doers.

Example-2: Complete ANOVA Table

Source	SS	df	MS	F
Explained	106.6	Â	21.32	2.60
Error		26		
Total	/			
Complete the table				

www.memphis.edu

Example-2: Solution

Source	SS	df	MS	F
Explained	106.6	5	21.32	2.60
Error	213.2	26	8.20	
Total	319.8	31	10.32	

Example-3

• N=20

Source	SS	df	MS	F
Explained	56.7	× A		
Error		14	13.50	
Total				

Dreamers. Thinkers. Doers.

www.memphis.edu

Example-3: Solution

Source	SS	df	MS	F
Explained	56.7	5	11.34	0.84
Error	189.0	14	13.50	
Total	245.7	19	12.93	