Reading Assignment

Read Example 9.11 page 339,
Sect. 9.9. Practical Design Considerations Chapter 9 of text
Chapter 10 of ACI

Design Example

Given

$$
f_{c}=4,000 \quad k s i
$$

$$
f_{y}=60,000 \quad \text { psi }
$$

$$
P_{u}=450 \quad k i p
$$

$$
M_{u}=385 \quad f t-k i p
$$

$$
\rho_{g}=0.03
$$

Find required b, and h (width and height of the cross section).

Solution:

Select a tied column dimension $h, h=20$, use 3 " cover, thus:

$$
\gamma=\frac{h-2 d^{\prime}}{h}=\frac{20-6}{20}=0.7
$$

Use the design aid given in your book on page 792, Figure B. 13 Eccentricity will be equal to:

$$
\begin{aligned}
& e=\frac{M_{u}}{P_{u}}=\frac{385 \times 12}{450}=10.26 \\
& \frac{e}{h}=\frac{10.26}{20}=0.51
\end{aligned}
$$

with $e / h=0.51$, from graph given on the next page read:

$$
\begin{aligned}
& \frac{P_{n}}{f_{c}^{\prime} A_{g}}=0.44 \\
& \frac{P_{u} / \phi}{f_{c}^{\prime} A_{g}}=0.44
\end{aligned}
$$

Assume $\phi=0.65$

$$
\begin{aligned}
& \frac{450 / 0.65}{4 \times A_{g}}=0.44 \\
& A_{g}=393 \quad \mathrm{in}^{2} \\
& b h=393 \quad \mathrm{in}^{2} \\
& b=\frac{393}{20}=19.67 \quad \mathrm{in}
\end{aligned}
$$

Use a column of 20×20. The area of steel will be:

$$
A_{s}=0.03 \times 20 \times 20=12 \quad i n^{2}
$$

Use $8 \# 11$ bars $A_{s}=12.5 \quad \mathrm{in}^{2}$

Note.

For design must insure satisfying ACI code provisions:

1. Min cover consideration
2. Min bar spacing

3 Arrangement of steel to achieve approximate agreement with design aid assumptions. 4. Evaluation of capacity of actual section chosen after all details have been satisfied.

Design Example Using the Design Aids

Use of graphic design aid for a column with axial load and uniaxial bending.
Consider that we wish to design a rectangular tied column to accept the following service dead and live loads and moments. Architectural considerations limit allowable column width $b=16$ in and $\mathrm{h}=20$ in (tied column). For now neglect length effects and bending about weak axis.

$$
\begin{aligned}
& f_{c}=4,000 \quad k s i \\
& f_{y}=60,000 \quad p s i \\
& P_{D}=184 \text { kip } \\
& P_{L}=213 \text { kip } \\
& M_{D}=107 \quad f t-k i p \\
& M_{L}=124 \quad f t-k i p
\end{aligned}
$$

Solution

Calculate design loads:

$$
\begin{aligned}
& P_{u}=1.2 P_{D}+1.6 P_{L}=1.2(184)+1.6(213)=561 \quad \text { kip } \\
& M_{u}=1.2 M_{D}+1.6 D_{L}=1.2(107)+1.6(124)=327 \quad \text { ft-kip }
\end{aligned}
$$

Use a cover of 3.0 inches.
The column parameters (assuming bending about the strong axis)

$$
\begin{aligned}
& \frac{P_{u} / \phi}{f_{c}^{\prime} A_{g}}=\frac{561 / 0.65}{4 \times 320}=0.67 \\
& \frac{e P_{u} / \phi}{h f_{c}^{\prime} A_{g}}=\frac{M_{u} / \phi}{h f_{c}^{\prime} A_{g}}=\frac{327 \times 12 / 0.65}{20 \times 4 \times 320}=0.24
\end{aligned}
$$

and

$$
\gamma=\frac{h-2 d^{\prime}}{h}=\frac{20-6}{20}=0.7
$$

From the design aid (see next page) read:

$$
\rho_{g}=0.031
$$

Area of steel will be:

$$
A_{s t}=0.031 \times 20 \times 16=9.92 \quad \mathrm{in}^{2}
$$

Use $8 \# 10$ bars with $A_{s t}=10.12 \mathrm{in}^{2}$

Check ϕ factor

