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- Microscopic Speed
Characteristics

Microscopic speed characteristics are those speed characteristics of individugl vehicles I
passing a point or short segment during a specified period of time. Speeds and travel ‘

This chapter contains five sections plus selected problems ‘and references. The
first section is- devoted to speed trajectories of individual vehicles. The next section
. presents speed characteristics under uninterrupted flow conditions, The third and fourth
sections are concerned with mathematical distributions and their evaluation. The final
section describes procedures for estimating population means and sample size require-
ments.

4.1 VEHICULAR SPEEQ TRAJECTORIES ,
This section is about the trajectories of individual vehicles Over space and time as
influenced by interrupted flow and highway grade situations. Interrupted flow situations

include sign- and signal-controlled intersections as well as railroad and pedestrian
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84 Microscopic Speed Characteristics Chap. 4

crossings. Highway grade situations will include the interactions between various types
of vehicles and the length and steepness of grades. ‘

First, equations are provided for determining vehicle speed trajectories over space
and time based on specified acceleration and deceleration rates. Maximum and normal
acceleration and deceleration rates are presented for various types of vehicles under
various grade situations. Then the equations and rates of acceleration and decelerauon
are applied to several highway traffic situations.

4.1.1 Equations of Motion and Acceleration/Deceleration Rates

Two equations of motion that can be used to calculate distance traveled and elapsed
time given the speed and acceleration (or deceleration) rates are*

t= m < 4.0
a
d =147t +0.733a> ’ 4.2)
where |, = speed (miles per hour) at the begmmng of the acceleration (or decelera-
tion) cycle
U, = speed (miles per hour) at the end of the acceleratlon (or deceleration)
cycle

a = acceleration (or deceleration) rate (miles per hour/second)

t = time for vehicle to accelerate (or decelerate) at rate @ from beginning
speed (W) to ending speed (u,)(seconds)

d = distance for vehicle to accelerate (or decelerate) at rate @ from beginning
speed L, to ending speed (U,) (feet)

As vehicles proceed along a highway, drivers may desire or be required to
accelerate and/or decelerate their vehicles because of other vehicles in the traffic stream,
interrupted flow situations, or highway design features. Acceleration and deceleration
rates vary considerably between drivers, vehicles, traffic situations, roadway situations,
and for different speed levels. One of the most comprehensive summaries of previous
research and field studies of maximum and normal acceleration and deceleration rates is
contained in the Transportation and Traffic Engineering Handbook [23] and is a start-
ing point for materials covered in this chapter. The following two paragraphs are
devoted to acceleration rates and deceleration rates.

Maximum and normal acceleration rates for various vehicle types, speed changes,
and grade situations are summarized in Table 4.1. Maximum acceleration rates
decrease with increased weight-to-horse-power ratios, with steeper grades, and with
higher running speeds. Normal acceleration rates observed under typical driving condi-
tions are considerably less than maximum acceleration rates. For example, normal
acceleration rates for passenger vehicles in level terrain and in nonemergency situations
are on the order of one-half to two-thirds of the maximum acceleration rates as shown
in Table 4.1. Another important consideration is the acceleration capabilities (or the

*Coefficients are needed in equation (4.2) because speeds and acceleration rates are expressed in terms
of miles per hour, while distances and time are expressed in feet and seconds.

s
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TABLE 4.1 Maximum and Normal Acceleration Rates
(Miles per Hour/Second)?

COMPOSITE PASSENGER VEHICLE

Speed Change

0-30 30-40 40-50 50-60

80(33) 5033 4733 38026 2.8 2.0)
7.8 4.6 42 34 24
6.7 3.7 34 25 15
5.8 2.8 25 L6, 0.6 .

+2%
+6%
+10%

PICKUP TRUCKS

8.0 5.0 2.0 1.8 L5
7.8 4.6 1.6 1.4 1.0
6.7 3.7 0.7 0.5 0.2
5.8 2.8 [30] - —

TWO-AXLE, SIX-TIRE TRUCK B

g

Level | 20 1.0 1.0 0.6 0.2
+2% 1.6 0.6 0.6 0.2 [50]
+6% 0.7 0.1 [30] — —
+10% [14] — — — —

TRACTOR-SEMITRAILER TRUCK

Level 2.0 1.0 0.8 0.4 0.1
+2% 16 06 0.3 [45]

+6% 0.7 23] — — —
+10% [4] — — — —

*Normal acceleration rates are shown in parentheses. Some vehicle types
On steeper grades cannot exceed a performance-limiting speed. These
speeds, shown in brackets, are called crawl speeds and cannot be ex-
ceeded.

* Source: Reference 23.

lack thereof) of vehicles with higher weight-to-horsepower ratios on steeper grades. For
example, a tractor-semitrailer truck on a sustained 6 percent upgrade will be unable to
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TABLE 4.2 Normal Acceleration Rates with Associated
Distances Traveled and Elapsed Times
for Passenger Vehicles in Level Terrain®

Initial Final Speed (miles/hr)
Speed
" (miles/hr) 15 30 40 50 60

33 33 33 3.1 2.9
0 4.5 9.1 12.1 15.9 20.9
49 200 354 574 929

33 2.9 2.5
30 — — 3.0 6.8 11.8
154 374 729

2.6 2.3

40 — — —_ 3.8 8.8
220 575

2.0

50 — — — — 5.0
355

3The first value given in each case is for acceleration rate in
miles per hour/second, the second for elapsed time in
seconds, and the third for distance traveled in feet.

Source: Reference 23.

Minimum safe stopping distances rather than maximum deceleration rates are con-
sidered because of the dependency on coefficient of friction rather than vehicle type and
because most design issues are concerned with the distance requirements to stop a vehi-
cle from some specified running speed. The equation for minimum stopping distance in
terms of running speed, grade situation, and coefficient of friction between the tires and
the pavement is

G )?
30(f+e)
where S = minimum stopping distance in (feet)
W, = running speed at beginning of the deceleration (miles per hour)
f = coefficient of friction between tires and pavement

g = grade situation expressed as a decimal (i.e., a 3 percent upgrade is expressed
as +0.03)

A table of minimum stopping distances to bring a vehicle to a complete stop as a
function of initial running speed, grade situation, and coefficient of friction is presented
as Table 4.3. The three subtables are for various tire—pavement situations: dry
pavement—good tires, dry pavement—poor tires, and wet pavement. In each table,
minimum stopping distances are given for selected running speeds and for three grade
situations: 6 percent downgrade, level, and 6 percent upgrade. Note that coefficient of

4.3)
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TABLE"4.3 Minimum Stopping Distances (feet) ' i

DRY PAVEMENT, GOOD TIRES

Running Speed (miles/hr)

Grade
20]30’40!50’60[70’80

fValue 5 || 075 [ o.zs,\/ 0.75 [ ‘ ' ’ ‘

-6% 19 f a3 |77 | | | _ | _
Level 18 40 71 — — — —
+6% 6 |37 [ 66 | — | — | _ | _

DRY PAVEMENT, POOR TIRES

058 LT

fValue —»

WET PAVEMENT
S Value — ” 0.40 l 0.36 ’ 0.33 I 0.31 ’ 0.30 l 0.29 ’ 0.27

~6% 39 100 .| 198 | 333 | 500 710 | 1016
Level 400 | 563 790
+6% 333 | 467 646

Source: Reference 29,

friction values are not only a function of the tire—pavement situation but also depend on
running speeds (i.e., lower coefficient of friction values are encountered at higher

traveled, and elapsed times for passenger vehicles in level terrain and under normal
operating conditions. The distances traveled and the elapsed times were calculated
using equations (4.1) and (4.2).

4.1.2 Highway Traffic Applications

Three applications will be made to demonstrate how acceleration and deceleration per-
formance of vehicles can be used to develop vehicle speed trajectories for travel through
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TABLE 4.4 ' Normal Deceleration Rates with Associated
Distances Traveled and Elapsed Times
for Passenger Vehicles in Level Terrain?

Initial Final Speed (miles/hr)
Speed
(miles/hr) 0 30 40 50 60
53
15 2.8 - — — —
30
4.6 -
30 6.5 — —_ — —
143
42 33
40 9.5 3.0 — — —
297 154
4.0 33 33
50 12.5 6.0 3.0 — —
495 352 198
3.9 33 33 33
60 15.5 9.0 6.0 3.0 —
737 594 440 242
3.8 33 33 33 33
70 18.5 12.0 9.0 6.0 3.0
1023 880 726 528 286

4The first value given in each case is for the deceleration rate in
miles per hour per second, the second for elapsed time in
seconds, and the third for distance traveled in feet.

Source: Reference 23.

A graphical illustration of vehicle trajectories in the vicinity of a signalized inter-
section in a rural area is shown in Figure 4.1. In each case shown, the running speed
some distance upstream and downstream of the signal is assumed to be 50 miles per
hour. The speeds at the stop line at the intersection are assumed to be 50, 30, and O
miles per hour. The vehicle trajectories during constant running speed are shown as
heavy lines while the vehicle trajectories during deceleration and acceleration are
shown as lighter lines. Note that the lost time due to slowing to 30 miles per hour is
only a few seconds, whereas a required stop (even without stopped time) is considerably
more. :

A graph of vehicle trajectories during a passing maneuver is shown in Figure 4.2.
In this example a vehicle traveling 60 miles per hour approaches a vehicle ahead in the
same lane which is traveling at a constant 40 miles per hour. The higher-speed vehicle
decelerates, maintains a distance headway of 100 feet for 4 seconds, and then passes
while accelerating back to 60 miles per hour. Note that the passing vehicle encroaches
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Distance {ft)
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Figure 4.1 Typical Vehicle Trajectories in the Vicinity of a Signalized Intersection

and a constant 60-mile Per hour running speed was maintained.

The final example is concerned with the trajectory of trucks on grades. In this
example maximum rather than normal acceleration and deceleration (due to limited
vehicle performance not to braking) are considered. The performance of trucks are
grouped on the basis of weight—to-horsepower ratios, and 100, 200, and 300 pounds per
horsepower are used to represent light, typical, and heavy trucks, respectively. Special
nomographs are prepared to aid in the analysis of truck projectories on grades. An
example nomograph contained in the 1985 Highway Capacity Manual [20] for typical
trucks [200 pounds per horsepower (Ib/hp)7] is reproduced here ag Figure 4.3. Two
sitnations are presented in this figure: acceleration on upgrades and downgrades, and

on grades varying from +8 percent upgrade to -5 percent downgrade. Note the Ieyl/e_ling
off of speed with length of grade. For example, on a 6 percent upgrade after about

36
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Figure 4.2  Vehicle Trajectories during a Passing Maneuver

3000 feet, the truck speed remains constant at about 23 miles per hour. This is because
this particular type of truck cannot accelerate further once this speed is reached, and this
speed is referred to as the crawl speed. In fact, in all cases there will be a leveling off
of speed with length of grade because of performance limitations (upgrades) or because
of drivers not using the full performance of the vehicle as the desired running speeds
are approached (downgrades). In the deceleration situation, the initial speed is assumed
to be 55 miles per hour, and the vehicle decelerates to various speeds as a function of
length of grade and steepness of upgrade. The solid lines represent the deceleration per-
formance for grades varying from +1 percent upgrade to +8 percent upgrade. Again,
note the leveling off of speed with length of grade.

The nomograph is specially constructed so that initial speeds other than zero and
55 miles per hour can be considered. For example, if a 200-1b/hp truck approaches a +4
percent upgrade that is 2000 feet long and is followed by a +6 percent upgrade that is
1000 feet long, the anticipated speeds at the end of each individual grade can be
predicted. Using the nomograph shown in Figure 4.3, the speed at the end of the 2000-
foot-long +4 percent upgrade is found to be 39 miles per hour. Projecting this point
horizontally to the left from the +4 percent to the +6 percent upgrade curve, and then
moving along the +6 percent upgrade curve down and to the right for an additional dis-
tance of 1000 feet, the speed at the end of the second grade is found to be 26 miles per

hour. Note that speeds above 55 miles per hour are not considered, and vehicle
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Figure 4.3 Performance Curves for a Typical Truck (200 Ib/hp) (From Reference 20)

trajectories when Speeds approach 55 mijles per hour require some adjustments if the
driver does not use the maximum acceleration performance of the truck. ,

For illustrative purposes, consider the speed trajectory of a 200-Ib/hp truck along
a highway that has a profile as shown in the top portion of Figure 4 4. The truck speeds
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Figure 4.4  Truck Speeds as Affected by Grades

driver approaches his desired speed, the maximum acceleration is not maintained and so
the truck will more likely reach a 55 mile-per hour running speed farther downstream as
shown in Figure 4.4. For comparison purposes, truck speed profiles are also shown for
light trucks (100 Ib/hp) and heavy trucks (300 Ib/hp) in the same example.

4.2 SPEED CHARACTERISTICS UNDER UNINTERRUPTED FLOW
CONDITIONS

Consider standing at a point along a highway facility during a relatively short period of
time under uninterrupted flow conditions: that is, a location away from intersections
which has little or no roadside development. The speeds of individual vehicles are
measured and recorded. This would result in a series of individual vehicular speeds
such as 50, 46, 48, 55, 48, and so on, miles per hour. The sample mean and sample
variance of these “ungrouped” speed observations would be '

N

Ly
i=l

b= N , (4.4)

N —
> W —n)?
P

N-1

2

s (4.5)

il
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s =52 ' | (4.6)

wheAre' o= sample mean speed (miles per hour)
H; = speed of vehicle ;
N = total number of speed observations
5% = sample variance
§ = sample standard deviation ‘
In most cases the speed observations are “grouped.” The frequencies of each speed level

on 200 individua] speed observations. The Ccumulative frequency and percentile are
shown in the next two columns and will be utilized a little later. The last two columns
are calculations required in determining the sample mean and sample variance using the
following equations: g (
1

s2= % .8)
s =52 ' 4.9)

where [I = mean speed of sample
& = number of speed groups
i = speed group |
i = number of observations in speed group ;
K; = midpoint speed of group {
. N = total number of speed observations
§° = sample variance
) § = sample standard deviation
Note that in calculating the varjance the term N - 1 rather than N is used in the
demonstration because of dependency between the last f,u; value and i However, for
moderate sample sizes, using N or N—] will have little effect on the numerical results,
For the grouped speed data shown in Table 4.5, the sample mean and the sample vari-
ance are calculated as follows:

g

> (fiun)
— s 10,460 .
L= N = W = 52.3 miles/hour (4.10)
g ) g 2
_Zf,-(ui) -1/N %f,-uf 4
s2= 2=t = @.11)

N-1 |
554,882 — 1/200(10,460)? /
= 225002 = 1/200(10,460)*
199
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TABLE 4.5 Grouped Speed Data

Microscopic Speed Characteristics

= 39.3 (miles/hour)?
s = \/s_2 = 6.3 miles/hour

Cumulative

w | f | Frequency | % | faw | fiw)
30 — 0 0 — —
31| — 0 0 — —_
32 0 0 0 — —
33 1 1 1 33 1,089
34 2 3 2 68 2,312
35 1 4 2 35 1,225
36 1 5 2 36 1,296
37 | — 5 2 — —
38 1 6 3 38 1,444
39 1 7 4 39 1,521
40 2 9 4 80 3,200
41 1 10 5 41 1,681
42 5 15 8 210 8,820
43 4 19 10 172 7,396
44 1 20 10 44 1,936
45 7 27 14 315 14,175
46 4 31 16 184 8,464
47 8 39 20 376 17,672
48 8 47 24 384 18,432
49 15 62 31 735 36,015
50 8 70 35 400 20,000
51 8 78 39 408 20,808
52 10 88 44 520 27,040
53 23 111 56 1,219 64,607
54 15 126 63 810 43,740
55 16 142 71 880 48,400
56 9 151 76 504 28,224
57 14 165 82 798 45,486
58 6 171 86 348 20,184
59 3 174 87 177 10,443
60 9 183 92 540 32,400
61 3 186 93 183 11,163
62 6 192 96 372 23,064
63 3 195 98 189 11,907
64 3 198 99 192 12,288
65 2 200 100 130 8,450
66 | — 200 100 — —
67 | — 200 100 — —
68 | — 200 100 — —
69 | — 200 100 —_ —
70 | — 200 100 —_ —

200 10,460 | 554,882

Chap. 4

(4.12)
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These distributions are helpful in showing important measures of central tendencies and
dispersion as well as qualitatively observing the shape of the speed distribution. ‘

The sample mean was calculated in equation (4.10) to be 52.3 miles per hour.
The sample mode can be observed in Figure 4.5a to be 53 miles per hour. The sample
median can be observed in Figure 4.5b to be 52.5 miles per hour. Hence the mean,
mode, and median of the sample are the three measures of central tendency of the sam-
ple and are 52.3, 53.0, and 52.5 miles per hour, respectively.

The standard deviation of the sample was calculated in equation (4.12) to be 6.3
miles per hour. Figure 4.5 can be used to determine the total range (0 to 100 percent)
and is found to be 65 miles per hour minus 33 miles per hour or 32 miles per hour.

57.8 miles per hour minus 45.5 miles per hour, or 12.3 miles per hour. Another meas-
ure of dispersion used uniquely in speed distributions is the 10-mile per hour pace.
This measure is defined as the highest percentile of vehicles in a 10-mile per hour
range. Inspection of Table 4.5 and Figure 4.5 indicates that the 10-mile per hour pace
is 47 to 57 or 48 to 58 miles per hour, each of which includes 62 percent of all vehicles
in the sample. In summary, the four measures of dispersion: standard deviation, total
range, 15 to 85 percentile range, and 10-mile per hour pace were found to be 6.3 miles
per hour, 32 miles per hour, 12.3 miles per hour, and 62 percent (47 to 57 or 48 to 58
"miles per hour), respectively. ‘ ’
The distributions graphically shown in Figure 4.5, and the calculated measures of
central tendency and dispersion provide insights into the type of mathematical distribu-

tributions are normal distributions, log-normal distributions, and composite distribu-
tions. Initial and primary attention is given to normal distributions and near the end of
this section log-normal and composite distributions are described briefly. |
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It is desirable to find appropriate mathematical distributions to represent speed
distributions for two major reasons. First, each mathematical distribution has unique
attributes, and if a measured distribution can be represented by a mathematical distribu-
tion, the measured distributions can be said to have similar attributes and hence greater
knowledge of the measured distribution can be inferred. It is also desirable to find
appropriate distributions for purposes of computer simulation for which individual vehi-
cle speeds are needed as input. Although measured speed distributions can be used
within such models, it is easier and more flexible to use mathematical distributions.

A unique normal distribution is defined when the mean and standard deviation are
specified. Thé normal distribution is symmetrical about the mean and the dispersion or
spread is a function of the standard deviation. For example, three unique normal distri-
butions are shown in Figure 4.6. In comparing normal distribution 1 with normal distri-
bution 2, s; =5, but M1 < Hy. In comparing normal distributions 2 and 3, Up =u; but
Sy < §3.

My, 89 Mo, Sy

Probability density function, flu)

M3, S3

Figure 46  Examples of Normal
Speed (miles/hr) Distributions »

An additional attribute of the normal distribution is that the mean, mode, and
median (the three measures of central tendency) are numerically equal. The dispersion
is such that when the standard deviation is specified, 68.27 percent of the observations
will be within 1 standard deviation of the mean, 95.45 percent within 2 standard devia-
tions of the mean, and 99.73 percent within 3 standard deviations of the mean. These
attributes are shown graphically in Figure 4.7.

The probability density function of the normal distribution is shown in Figure
4.7a and the general equation is

1 -(u-0y12¢6°

i) = e ' 413

| S P (4.13)
where f(l;) = probability density function of individual speeds

T = aconstant, 3.1416 /

€ = aconstant Napierian base of logarithms (e = 2.71828) j
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Figure 4.7  Artributes of Normal
(b} Distributions :

K; = speed value being investigated

U = population mean speed (miles per hour)
¢ = population standard deviation
2

G- = population variance

The total area under the probability density curve includes all possible outcomes and
therefore is equal to unity (or 100 percent). The area under the curve between a speed
value of, say, U — 16 and U + 16 (the shaded area in of Figure 4.7a) represents the pro-
bability of a speed between these two speed values, and in this case has a probability of
0.6827 (68.27 percent). In a similar way the area between U — 20 and U + 20
represents a probability of 0.9545 (95.45 percent) and the area between U — 3¢ and
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U+30 Tepresents a probability of 0.9973 (99.73 percent). Note that one could ask
What is the probability of an individual speed over U + 1672 The total unshaded area
Tepresents a probability of 0.3173 ( 1.0000-0.6827), the normal distribution is symmetri-
cal and therefore the unshaded areas representing the probability of W, > U + 1o is
0.3173/2, or 0.1586. That is, if individual speeds are normally distributed, 15 to 16

Two issues must now be addressed in order to apply the normal distribution to a
measuréd speed distribution. Equation (4.13) specifies that population mean (U) and

difference between the two standard deviations becomes smaller and smaller, As N
goes to infinity, the two standard deviations are identical. As a practical matter, if
N > 30, the standard deviation of the sample is numerically substituted for the standard
deviation of the population. For sample sizes less than 30, the r-distribution rather than
the normal distribution is used. '

The other issue involves the calculation procedures for the normal distribution.
Inspection of equation (4.13) indicates that calculating the probability density function
is rather tedious, and observing Figure 4.7a indicates that converting the probability
density function calculations into probabilities for various speed ranges is very cumber-
some. One solution is to “normalize” the normal distribution and Integrate the probabil-
ity density function between the mean speed value and other speed values. The result-

X
P=fl= 4.14
f ( 6) (4.14)
where P = probability of an observation between some speed, |y, and the mean speed,

X = ‘speed range or deviation between y, and U X=p, -0 (absolute value)
0 = standard deviation of the population (s is best estimate for large samples)

As an illustration, consider the example shown in Table 4.5, The sample mean is
52.3 miles per hour and the standard -deviation of the speed sample is 6.3 miles per
hour. The best estimate of the population mean is 52.3 miles per hour and since
N > 30 (actually, N = 200), the standard deviation of the population is estimated to be
6.3 miles per hour and the normal distribution is used. Pose the question: What 1s the

i
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TABLE 4.6 Calculating Probabilities from a Normal Distribution
Second Decimal Place in x/s
x/s || 0.00. 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 || 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319  0.0359
0.1 || 0.0398 0.0438  0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 || 0.0793 0.0832  0.0871 . 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 || 0.1179 0.1217 01255 0.1293 0.1331  0.1368 0.1406 0.1443 0.1480 0.1517
04 || 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736  0.1772 0.1808 0.1844 0.1879
0.5 || 0.1915 0.1950 0.1985 0.2019 02054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 || 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2468 0.2517 0.2549
0.7 {| 0.2580 0.2611 0.2642 02673 0.2704 0.2734 02764 02794 0.2823 0.2852
0.8 || 0.2881 - 02910 02939  0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 | 0.3159 0.3186 0.3212 0.3238  0.3264 - 0.3289 - 0.3315 0.3340 0.3365 0.3389
1.0 || 0.3413 03413 03461 03485 0.3508 0.3531 0.3554 03577 03599  0.3621
1.1 || 0.3643 0.3665 03686 0.3708 0.3729 03749 0.3770  0.3790 0.3810  0.3830
1.2 || 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 || 0.4031 0.4049 04066 0.4082 04099 04115 04131 04147 04162 04177
14 |- 0.4192 0.4207 04222 04236 04251 04265 0.4279 04292 04306 04319
1.5 || 0.4332 0.4345 04357 04370 04382 04394 04406 04418 04429 0.4441
1.6 || 0.4452 0.4463 0.4474 04484 04495 04505 0.4515 04525 04535 04545
1.7 || 0.4554 0.4564 04573 04582 04591 04599 0.4608 04616 04625 04633
1.8 {| 0.4641 0.4649 04656 0.4664 04671 04678 0.4686 0.4693 0.4699 04706
1.9 || 0.4713 04719 04726 04732 04738 04744 04750 04756 04761 04767
2.0 | 04772 0.4778 04783 0.4788 04793 0.4798 04803 0.4808 0.4812 0.4817
2.1 || 0.4821 0.4826 04830 0.4834 04838 0.4842 04846 0.4850 0.4854 0.4857
2.2 || 0.4861 04864 04868 0.4871 0.4875 0.4878 04881 04884 04887 0.4890
2.3 || 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 04909 0.4911 04913 0.4916
24 1| 04918 04920 04922 04925 04927 04929 04931 04932 0.4934 0.4936
2.5 | 0.4938 04940 04941 04943 04945 0.4946 0.4948 0.4949 04951 04952 .
2.6 || 0.4953 0.4955 04956 0.4957 0.4959 0.4960 0.4961 04962 04963 0.4964
2.7 || 0.4965 04966 04967 04968 04969 04970 04971 04972 04973 04974
2.8 || 0.4974 04975 04976 0.4977 0.4977 0.4978 0.4979 04979 04980 0.4981
2.9 || 0.4981 0.4982 0.4982 04983 0.4984 0.4984 04985 0.4985 04986 0.4986
3.0 || 0.4987 0.4987 04987 0.4988 0.4988 0.4989 0.4989 0.4989 04990  0.4990
3.1 || 0.4990 04991 04991 04991 04992 04992 04992 04992 04993  0.4993
3.2 || 0.4993 0.4993  0.4994 0.4994 04994 04994 0.4994 0.4995 0.4995  0.4995
3.3 || 0.4995 0.4995 04995 04996 04996 0.4996 04996 0.4996 0.4996 0.4997
3.4 || 0.4997 0.4997 04997 0.4997 04997 0.4997 04997 0.4997 0.4997  0.4998
3.5 || 0.4998 ¢
4.0 || 0.49997
4.5 || 0.499997
5.0 {| 0.4999997
Source:

Standard Mathematical Tables, 15th ed. Reprinted by permission of CRC Press, Boca Raton, Fla.

probability of individual speeds between 35 and 40 miles per hour? Since the mean lies
above both 35 and 40 miles per hour, two calculations are required: X between 35.0
and 52.3, and X between 40.0 and 52.3.
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52.3 ~35.0 ’ il

X ) ) . }
= = 22200 S 075 4.15 i
(G 355523 6.3 . . ( ) : N
(5) = 223400 4 (4.16) B
G /405523 6.3 : ( i

equal to 0.0226. With a sample size of 200, the expected frequency would be 4 or 5.
Note in Table 4.5 that the measured frequency was 4.
Two other distributions have been suggested to represent measured speed distribu-

tions: log-normal and composite distributions. The log-normal distribution is presented

are available for detailed analysis of log-normal distributions [3, 4, 51
The composite distribution has been proposed when the traffic stream consists of

tions of distributions that could be used in a composite distribution, that is, normal or
log-normal for one or the other subpopulations, Subpopulations on a per-lane basis
might be considered. The traffic analyst may consider some form of a composite distri-
bution when the measured speed distribution is bimodal; that is, two modes some dis-
tance apart are clearly identified. '

4.4 EVALUATION AND SELECTION OF MATHEMATICAL
DISTRIBUTIONS

The suggested procedure is to assume initially that the measured speed distribution can
be represented by a normal distribution, Numerical checks are made of the measures of

accepted, then the search for a mathematical distribution is completed and the normal
distribution is selected. Op the other hand, if there is significant evidence to elimillaate
the normal distribution, the process is repeated assuming a Iog—norma_l and/or a corrlipo—
site distribution. ' ;
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The procedure described above will be applied to the measured speed distribution
shown in Table 4.5 and Figure 4.5. Numerical checks are made of the measures of cen-
tral tendency. The mean, median, and mode are 52.3, 52.5, and 53.0 miles per hour,
respectively, which are in very close agreement. The frequency distribution shown in
Figure 4.5a displays a fairly strong single mode. Numerical checks are made of the
measures of dispersion: standard deviation, total range, 15 to 85 percentile range, and
10 miles per hour pace are 6.3 miles per hour, 32 miles per hour, 12.3 miles per hour,
and 62 percent (47 to 57 or 48 to 58 miles per hour), respectively. Some of the more
important checks are shown below.

¢ The variancé of a measured speed distribution normally should be less than the
varia_nce of a random distribution (s3 = m):
5% = (6.3)* = 39.3 miles/hour

s3 = m = 52.3 miles/hour

s? <53
o The standard deviation should be approximately one-sixth of the total range since

the mean plus and minus three standard deviations encompasses 99.73 percent of
the observations of a normal distribution:

“total range .
SEST = -—G—g—, @.17)
= % = 5.3 miles/hour
§ = SEST

* The standard deviation should be approximately one-half of the 15 to 85 percent
range since the mean plus and minus 1 standard deviation encompasses 68.27 per-
cent of the observation of a normal distribution

1585 percentile range :
SgsT = = & 4.18)

12.3
=——=6.15
2 )

§ = SEST
e The 10-mile per hour pace should be approximately straddling the sample mean
1 = 52.3 miles/hour
10-mile per hour pace =47 to 57 or 48 to 58
midpoint of pace = 52 or 53

midpoint of pace ~ L
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¢ The normal distribution has little skewness and the coefficient of skewness calcu-
lated below should be close to zero.

mean - mode (4.19)
s

_ 523-530 _
- 6.3 =01

coefficient of skewness =

or
mean -smedlan j 4.20)

52.3-525
=3|———|=0.1
3 ( 6.3 )

coefficient of skewness= 3 (

The numerical checks appear to support the assumption of a normal distribution,
so a graphical plot is made of the measured speed distribution on normal probability
paper. The graphical plot is shown in Figure 4.8. The solid straight line represents a
normal distribution in which the population mean (U) is 52.3 miles per hour, and the
population standard deviation of speed (o) is 6.3 miles per hour. The plotted data
points are taken from the measured speed distribution. There appears to be a very good

fit in the 10 to 90 percentile range and as might be expected, a poor fit at the extreme

tails of the distribution (less than 2 percent and more than 98 percentile ranges). Note
that the slope of the line on the graph represents the standard deviation, with flatter
slopes representing larger standard deviation values and steeper slopes representing
smaller standard deviation values. The data points reveal that below the mean speed,
the distribution is a little more spread out (a larger indicated standard deviation), while
above the mean speed, the distribution is a little more dense (a smaller indicated stan-
dard deviation). Overall the graphical fit appears reasonable, o the next and last step is
to perform a chi-square test.

The chi-square test was described in Section 2.6, so only the calculations and the
conclusions will be presented here. Inspection of the observed frequencies in Table 4.5
reveals that the 1-mile per hour class interval is too small considering the number of
observations (N = 200). Neiswanger [21] has proposed that there normally -should be
between 10 and 25 class intervals, depending on the range of the observation values and
the number of observations. Sturges [22] proposed that the following equation be used
to estimate the size of the class interval: .

_ Range
1+ (3.322) log N
where I = size of the class interval

Range = total range (largest observed value minus smallest observed value)
N = number of observations

(4.21)

Substituting 32 miles per hour for Range and 200 for number of observations, the size

of the class can be determined. ;
I
!
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32
I + (3.322) log 200
32

= T+763 >

I =

Considering this estimate of size of the class interval and the desire to have at least 10

class intervals,

a class interval of 3 miles per hour is selected. Before performing the



calculated and shown in the second column, The deviation is “normalized” by dividing
it by the standard deviation. The probabilities of occurrence (P) between each class
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Table 4.8 summarizes the chi-square test calculations. The observed frequencies
are taken from Table 4.5 and the theoretical frequencies are taken from Table 4.7. The
resulting calculated value of chi-square is found to be 4.09. The degrees of freedom is
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TABLE 4.8 Chi-Square Test Calculations

Class : 2
menal | | £ || Go£P (f—ff)—
<355 4 0.76
35.5-38.5 2 2.10 }+1.28‘ 1.64 0.19
38.5-41.5 4 586 |
41.5-44.5 10 12.78 | -2.78 7.73 0.60
44,5-47.5 19 2322 | -4.22 17.81 0.77
47.5-50.5 31 32.46 -1.46 2.13 0.07
' 50.5-53.5 41 37.88 +3.12 9.73 0.26
53.5-56.5 40 34,66 | +5.34 28.52 0.82
56.5-59.5 23 2486 | —1.86 3.46 0.14
59.5-62.5 18 1490 | +3.10 9.61 0.64
> 62.5 8 1052 | -2.52 6.35 0.60
200 | 200 ' Ao =409

standard deviation, and frequency of the measured speed distribution. Note that it was
necessary to combine the first three class intervals to obtain a minimum theoretical fre-
quency of 5 or more. The resulting degrees of freedom is 6, and selecting an o value of
0.05, the table value of chi-square was found to be 12.59 from Appendix G. Since the
calculated value is less than the table value of chi-square, the hypothesis is accepted and
the concluding statement would be “There is no evidence of a statistical difference
between the two distributions and the measured speed distribution could be identical to
the normal distribution.”

" The measured speed distribution provided numerical checks, graphical plot, and
chi-square test results which support the use of the normal distribution. If on the other
hand, contrary results were found, attention would be directed to the log-normal and/or
composite distributions. If there was no strong evidence of a bimodal distribution by
inspection of a frequency distribution, as shown in the top portion of Figure 4.5, the
log-normal distribution would be considered. The first step would be to plot the cumu-
lative distribution of the speed measurements on logarithm-probability paper, as shown
in Figure 4.9. The previously analyzed normal distribution is shown as a solid line, and
the measured speed distribution is shown as a series of data points. A log-normal distri-
bution would appear as a straight line in the figure. Therefore by inspection, the meas-
ured speed distribution is closer to a normal distribution than any log-normal distribu-
tion. ‘

If, on the other hand, a measured speed distribution appears as a sloping straight
line on Figure 4.9, the log-normal distribution would appear promising. For more quan-
titative evaluation, the theoretical frequency of the log-normal distribution could be
determined and a chi-square test performed. :
~ The composite distribution could be considered but usually after both the normal
and log-normal distributions are rejected. Again the key characteristic for the' composite
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Figure 49  Measured Speed Distribution on Logarithm Probability Paper

distribution is a bimodal-appearing distribution. Two approaches may be considered.
The speed measurements and field site could be restudied to attempt to identify the two
subpopulations: that is, driver types, vehicle types, lane usage, and so on. If subpopula-
tions can be identified, a second speed study should be undertaken and individual
speeds of vehicles in the two subpopulations measured separately. Then the normal or
log-normal distributions could be considered for each subpopulation.- In simple!, clear
- Ccases it might be possible to develop a composite distribution based on the on'g,ihal set
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of speed measurements if the mean, standard deviation, and frequency of each subpopu-
lation can be determined.

4.5 ESTIMATION OF POPULATION MEANS AND SAMPLE SIZES

The best single estimate of the population mean is the sample mean. However, if
several samples were taken under similar conditions and the sample means computed,
there would be some numerical differences between sample mean values and hence
differences in estimating the population mean. As more and more samples were taken
and sample means computed, a distribution of sample means about the population mean
would emerge in a fashion similar to a distribution of individual speeds about its sample
mean. Of course, the distribution of sample means would be much more compact than
the distribution of individual speeds, and standard statistics references [4, 5, 21] would
show that the dispersion measure called the “standard error of the mean” would be

s
Sz == 422
55N (4.22)
where sz = standard error of the mean (miles per hour)
s = standard deviation of the sample of individual speeds
N = number of individual speeds observed

Further, the distribution of sample means would be normally distributed about the popu-
lation mean even if the distribution of individual speed measurements were not nor-
mally distributed. It is significant to observe from equation (4.22) that only one sample
of observations is required in order to calculate the standard error of the mean (sz).
Using equation (4.22) and the speed observations presented in Table 4.5 and Flgure 4.5,
the standard error of the‘mean is

s 6.3
§y = — = ——— = 0.45 miles per ho
=N T V200 perodt

Assuming the population mean equal to the sample mean (52.3 miles per hour) and
using the calculated value of the standard error of the mean, a distribution of sample
means can be calculated and the results are shown in Figure 4.10. Figure 4.10 is plotted
in a similar fashion as Figure 4.5a except that the vertical scale is the probability den-
sity function of sample mean ({’s) rather than individual speeds (i;’s). As mentioned
before, the best single estimate of the population mean is the sample mean (52.3 miles
per hour). However now with Figure 4.10, probability statements can be made about the
population mean such as shown at the bottom of Figure 4.10. For example, with a pro-
bability of 0.9973, the population mean is expected to lie between 50.95 and 53.65
miles per hour. "Other probability statements can be made as indicated on the figure.
This concept can be carried further in determining sample size requirements for
speed studies. In speed studies a set of observations are made, the sample mean is cal-
culated, and the population mean which is the real objective is inferred. Although
larger samples may result in better estimates of the population mean, larger samples
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require more time and effort in collection and analysis, Consequently, it is desirable to
develop a technique that wil] provide the analyst with a means of selecting the smallest
-sample size possible while providing a limit on 3 prespecified probability that the popu-
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0.99 are selected. In these cases instead of using £1sz, 2 coefficient on the order of 2 or
3 is used for the standard error of the mean. More specifically, if a probability level of
0.95 is selected, the coefficient can be obtained from Table 4.6. Since the distribution
is symmetrical, a value of 0.4750 (one-half of 0.95) is entered and the coefficient is
found to be 1.96. Equation (4.20) is now modified in two ways: the coefficient ¢ is
entered on the right side of the equation, and &, the allowable error, is substituted for
where n = required sample size

tsz. Equation (4.23) becomes _ .
\ 2 2
n= (J‘i) = (’—S) (4.24)
\ I8y €
s = standard deviation

e = user-specified allowable error
¢+ = coefficient of the standard error of the mean that represents user specified
probability level ‘

Figure 4.11 contains nomographs that can be used for the determination of sample
size requirements based on equation (4.24). Figure 4.11a is for a 0.95 probability level,
Figure 4.11b is for a 0.99 probability Jevel. The analyst can enter the desired nomo-
graph with the expected standard deviation value and the user-selected allowable error,
and the minimum sample size can be determined.” For example, the analyst may want
to estimate the population mean within 1 mile per hour with 99 percent confidence,
and based on previous speed studies the standard deviation is expected to be 4 miles per
hour. Figure 4.11b would indicate a minimum sample size of 100 observations.
Another example would be the situation where the standard deviation is unknown and a
pilot speed study is undertaken to estimate the standard deviation. The analyst then
wishes to check to see if the pilot speed study sample is adequate or if a further speed
study is required. Consider the example given in Table 4.5, in which 200 speeds are
observed and the standard deviation is found to be 6.3 miles per hour. Assuming that
the population mean is to be estimated within +1 mile per hour with 95 percent
confidence, Figure 4.11a would indicate a minimum sample size of approximately 152
observations. Since the number of observations in the original sample (n = 200) was
larger than the determined minimum sample size (N = 152), no further observations are
required.

4.6 SELECTED PROBLEMS

1. Undertake a library study of microscopic simulation models that require individual vehicu-
lar speeds to be generated within the model. What type(s) of mathematical distributions
are employed?

2. Estimate the lost time due t0 a vehicle stopping (but with stopped delay being equal to
zero) assuming cruise or running speeds upstream and downstream of the stop location of
30, 40, 50, and 60 miles per hour. Plot on graph similar to Figure 4.1. -

3. There is considerable concern about traffic safety on high-speed approaches to rural signal-
ized intersections. That is, when the signal changes to amber, the approaching vehicle may
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Nomographs
be too far away from the stop line to accelerate and enter the intersection before the ending
of the amber phase but too close to the intersection to decelerate and stop at the stop line.
Consider the case of passenger vehicles in level terrain under wet pavement conditions.
Assume approach speeds of 30, 40, 50, and 60 miles per hour and use maximum accelera-
tion and deceleration rates, Determine the minimum amber phase to eliminate the so-
called “dilemma” zone. (Hint: Plot a diagram in which the vertical scale is speed and the






