Speed Studies

CIVL 4162/6162
(Traffic Engineering)
Learning Objectives

- Determine following characteristics of spot speed
 - mean, median, mode, pace, 85th percentile, sd
- Fit a speed distribution
- Check for normality
- Comparison of assumed versus observed distribution
Introduction

- Speed data is needed for a variety of traffic analyses
- Spot speed data refers to measurement of individual speeds of vehicles passing a point on a roadway.
- Care must be taken to conduct the study appropriately so that the sample data will adequately reflect speed characteristics of the population.
Spot Speed Studies

- Useful for:
 - Monitoring speed trends
 - Establishing traffic operation and control parameters
 - Establishing highway design elements
 - Evaluating highway capacity
 - Assessing highway safety
 - Measuring effectiveness of changes
Parameters of Interest

- Median spot speed
- Mean spot speed
- Modal spot speed
- Pace
 - 10 mi/hr increment in speed in which the higher percentage of drivers is observed
- 85th percentile speed
- Standard Deviation
Data Collection

- Individual vehicle
 - Manual
 - Radar
 - Video

- All-vehicle sampling
 - Road detectors
 - Radar-based traffic sensors
 - Electronic-principle detectors
Study Considerations

- Select roadway section with typical travel speed;
- Unless a specific requirement of the speed study, make an attempt to avoid the following, primarily to avoid accelerating/decelerating vehicles:
 - Traffic signals and other junctions
 - Intersections
 - Work zones
 - Curves
 - Parking zones
 - Active crosswalks
- Consider free flow vehicles only (those not impacted by speed of preceding vehicle, such as the first vehicle in a platoon);
Study Considerations

• Consider date and time
 - Typical weekdays (Tues., Wed., Thur.) preferred

• Avoid unusual conditions, including:
 • Unique events
 • Inclement weather
 • Holidays

• If using Radar, consider:
 - the angle of measurement to assure accurate speeds
 - remain inconspicuous so as not to influence speeds

• Remember safety first!!!
Spot Speed Study Analysis

- Data reduction (tabular and graphical presentation)
- Descriptive statistics (mean, median, mode, standard deviation, pace, etc.)
- Statistical inference (do significant differences exist between mean speeds for different conditions, etc.)
- A sample size of 100 veh per lane is acceptable for most circumstances
Data presentation

• Frequency distribution
• Cumulative frequency distribution
• Indicate central tendency and dispersion
• Evaluation depends on whether or not individual speeds or speed classes collected
<table>
<thead>
<tr>
<th>Speed</th>
<th>Passenger Vehicles</th>
<th></th>
<th>Buses</th>
<th></th>
<th>Trucks</th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Record</td>
<td>No.</td>
<td>Record</td>
<td>No.</td>
<td>Record</td>
<td>No.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>11</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>11</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>5</td>
<td>11</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>11</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>11</td>
<td>2</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>6</td>
<td></td>
<td>11</td>
<td>2</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>5</td>
<td></td>
<td>11</td>
<td>2</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
Uninterrupted Flow Conditions

- **Sample Mean**
 \[\bar{\mu} = \frac{\sum_{i=1}^{N} \mu_i}{N} \]

- **Sample Standard Deviation**
 \[s^2 = \frac{\sum_{i=1}^{N} (\mu_i - \bar{\mu})^2}{N - 1} \]

Where,
- \(\bar{\mu} \) -> Sample mean speed, mph
- \(\mu_i \) -> Speed of vehicle \(i \), mph
- \(N \) -> Total number of speed observations
- \(s^2 \) -> Sample variance
- \(s \) -> Sample standard deviation
Grouped Observations

- Sample Mean
 \[\bar{\mu} = \frac{\sum_{i=1}^{g} f_i \mu_i}{N} \]

- Sample Standard Deviation
 \[s^2 = \frac{\sum_{i=1}^{g} f_i (\mu_i)^2 - \frac{1}{N} \left(\sum_{i=1}^{g} f_i \mu_i \right)^2}{N - 1} \]

- Where,

- \(\bar{\mu} \) -> Sample mean speed, mph
- \(\mu_i \) -> Speed of vehicle \(i \), mph
- \(N \) -> Total number of speed observations
- \(s^2 \) -> Sample variance
- \(s \) -> Sample standard deviation
- \(f_i \) -> Number of observations in speed group \(i \)
- \(g \) -> Number of speed groups
Speed Exercise
Statistical inference

- Most speed data tends to follow normal distribution
- This can be evaluated using chi-square test for goodness of fit
- If the data is normally distributed, confidence intervals may be determined, and required sample sizes may be estimated
Normal Distribution

- A unique normal distribution is defined when mean and standard deviation are specified
- The normal distribution is
 - Symmetrical about the mean
 - Dispersion is a function of the standard deviation
Normal Distribution

\[s_1 = s_2, \text{ but } \mu_1 < \mu_2 \]
\[\mu_2 = \mu_3, \text{ but } s_2 < s_3 \]
Normal Distribution

- The dispersion is such that
 - 68.27% of observations will be within 1 s.d
 - 95.45% of observations will be within 2 s.d
 - 99.73% of observations will be within 3 s.d
Two Issues with Normal Distribution

- Issue-1: Sample mean and sample s.d are known for most studies; population mean and population standard deviation are very difficult to estimate
- Issue-2: Estimating population s.d from the sample s.d is even more complex
Sample Size

- The relationship between sample and population is \(N \)
- As \(N \) increases to infinite, then sample s.d is equivalent to population s.d
- In practice it is found that
 - If \(N>30 \), then sample s.d = mean s.d
 - If \(N<30 \), then t-distribution rather than normal distribution is used
Question

- What is the probability of individual speeds between 35 and 40 mph

\[
\left(\frac{x}{\sigma}\right)_{35\rightarrow52.3} = \frac{52.3 - 35.0}{6.3} = 2.75
\]

\[
\left(\frac{x}{\sigma}\right)_{40\rightarrow52.3} = \frac{52.3 - 40.0}{6.3} = 1.95
\]

- Probability value for 2.75, = 0.4970
- Probability value for 1.95, = 0.4744
- Probability of speed between 35 and 40 = 0.4970 - 0.4744 = 0.0226
- With sample size of 200, the expected frequency is 0.0226*200 = 4 or 5
Evaluation of Selected Mathematical Distribution (1)

- Rule-1: The variance of measured speed distribution normally should be less than the variance of a random distribution (i.e. poisson)
 \[s^2 = 6.3^2 = 39.3 \text{ mph} \]
 \[s^2_r = \mu = 52.3 \text{ mph} \]
 \[s^2 < s^2_r \]

- Rule-2: The s.d should be approximately \(1/6\)th of total range since plus or minus 3 s.d encompasses 99.73% of the observations of a normal distribution

\[s_{est} = \text{total range}/6 = 32/6 = 5.3 \text{ mph} \]

\[S \sim S_{est} \]
Evaluation of Selected Mathematical Distribution (2)

- Rule-3: The standard deviation should be approximately one half of the 15 to 85 percentage range
 \[s_{est} = \frac{(15 - 85 \text{ percentile range})}{2} \]
 \[= \frac{12.3}{2} = 6.15 \]
 \[s \sim s_{est} \]

- Rule-4: The 10 mile per hour pace should be approximately equal to the sample mean
 \[\text{10 mile hour pace} = 52 \text{ or } 53 \]
 \[\text{Mean} = 52.3 \]
 \[\text{Pace} \sim \text{Mean} \]
Evaluation of Selected Mathematical Distribution (3)

- Rule-5: The normal distribution has little skewness and the coefficient of skewness should be close to zero.
 - Coefficient of skewness = \(\frac{\text{mean} - \text{mode}}{\text{s}} \)
 - \(= \frac{52.3 - 53}{6.3} = 0.1 \)

Or
- \(3[\frac{\text{mean}-\text{median}}{\text{s}}] = 3[\frac{52.3-52.5}{6.3}] = 0.1 \)

- *The numerical checks appear to support the assumption of a normal distribution*
Testing for Normalcy

- **Null Hypothesis**: There is no statistical difference between the measured distribution and normal distribution

- **Alternate Hypothesis**: There exists statistical difference between the measured distribution and normal distribution
Testing for Normalcy: The Chi-Square Test (1)

- Group the data and find the estimated frequency

<table>
<thead>
<tr>
<th>Class Interval Limit</th>
<th>z</th>
<th>z/s</th>
<th>P</th>
<th>Pt</th>
<th>Ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.5</td>
<td>16.8</td>
<td>2.666667</td>
<td>0.4962</td>
<td>0.0104</td>
<td>2.08</td>
</tr>
<tr>
<td>38.5</td>
<td>13.8</td>
<td>2.190476</td>
<td>0.4858</td>
<td>0.0290</td>
<td>5.80</td>
</tr>
<tr>
<td>41.5</td>
<td>10.8</td>
<td>1.714286</td>
<td>0.4568</td>
<td>0.0646</td>
<td>12.92</td>
</tr>
<tr>
<td>44.5</td>
<td>7.8</td>
<td>1.238095</td>
<td>0.3922</td>
<td>0.1152</td>
<td>23.04</td>
</tr>
<tr>
<td>47.5</td>
<td>4.8</td>
<td>0.761905</td>
<td>0.2769</td>
<td>0.1645</td>
<td>32.90</td>
</tr>
<tr>
<td>50.5</td>
<td>1.8</td>
<td>0.285714</td>
<td>0.1125</td>
<td>0.1880</td>
<td>37.60</td>
</tr>
<tr>
<td>53.5</td>
<td>1.2</td>
<td>0.190476</td>
<td>0.0755</td>
<td>0.1720</td>
<td>34.40</td>
</tr>
<tr>
<td>56.5</td>
<td>4.2</td>
<td>0.666667</td>
<td>0.2475</td>
<td>0.1259</td>
<td>25.19</td>
</tr>
<tr>
<td>59.5</td>
<td>7.2</td>
<td>1.142857</td>
<td>0.3735</td>
<td>0.0738</td>
<td>14.77</td>
</tr>
<tr>
<td>62.5</td>
<td>10.2</td>
<td>1.619048</td>
<td>0.4473</td>
<td>0.0527</td>
<td>10.54</td>
</tr>
</tbody>
</table>
Testing for Normalcy: The Chi-Square Test (2)

<table>
<thead>
<tr>
<th>Class Interval Limit</th>
<th>f₀</th>
<th>ft</th>
<th>f₀-ft</th>
<th>(f₀-ft)^2</th>
<th>[(f₀-ft)^2]/ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.5</td>
<td>2</td>
<td>2</td>
<td>2.08296</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.5</td>
<td>4</td>
<td>5.798655</td>
<td>1.352373</td>
<td>1.828914</td>
<td>0.315403155</td>
</tr>
<tr>
<td>41.5</td>
<td>10</td>
<td>12.92045</td>
<td>-2.92045</td>
<td>8.529019</td>
<td>0.660117863</td>
</tr>
<tr>
<td>44.5</td>
<td>19</td>
<td>23.04361</td>
<td>-4.04361</td>
<td>16.35078</td>
<td>0.709558121</td>
</tr>
<tr>
<td>47.5</td>
<td>31</td>
<td>32.89801</td>
<td>-1.89801</td>
<td>3.602447</td>
<td>0.109503502</td>
</tr>
<tr>
<td>50.5</td>
<td>41</td>
<td>37.5967</td>
<td>3.403296</td>
<td>11.58242</td>
<td>0.308070208</td>
</tr>
<tr>
<td>53.5</td>
<td>40</td>
<td>34.39509</td>
<td>5.604908</td>
<td>31.41499</td>
<td>0.91335674</td>
</tr>
<tr>
<td>56.5</td>
<td>23</td>
<td>25.18872</td>
<td>-2.18872</td>
<td>4.79048</td>
<td>0.190183585</td>
</tr>
<tr>
<td>59.5</td>
<td>18</td>
<td>14.76609</td>
<td>3.233911</td>
<td>10.45818</td>
<td>0.708256568</td>
</tr>
<tr>
<td>62.5</td>
<td>8</td>
<td>10.5437</td>
<td>-2.5437</td>
<td>6.470419</td>
<td>0.61367619</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td>4.528125932</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

• χ^2 from the table for $\alpha = 0.05$, and degrees of freedom=6; is 12.6
• Since χ^2 calculated is less than the table value, we fail to reject the hypothesis.
• The conclusion is
 - There is no statistical difference between the measured distribution and normal distribution
Sample size

\[n = \left(\frac{ts}{\varepsilon} \right)^2 \]

Where

- \(n \rightarrow \) required sample size
- \(t \) - coefficient of standard error that represents user specified probability level
- \(\varepsilon \): user specified probable error
- \(s \): standard deviation