

Traffic Flow Models

CIVL 4162/6162 (Traffic Engineering)

Lesson Objective

- Demonstrate traffic flow characteristics using observed data
- Describe traffic flow models
 - Single regime
 - Multiple regime
- Develop and calibrate traffic flow models

THE UNIVERSITY OF **MEMPHIS**

Field Observations (1)

- The relationship between speed-flow-density is important to observe before proceeding to the theoretical traffic stream models.
- Four sets of data are selected for demonstration
 - High speed freeway
 - Freeway with 55 mph speed limit
 - A tunnel
 - An arterial street

Dreamers. Thinkers. Doers.

High Speed Freeway

• Figure 10.3

www.memphis.edu

THE UNIVERSITY OF

High Speed Freeway (1)

- This data is obtained from Santa Monica Freeway (detector station 16) in LA
- This urban roadway incorporates
 - high design standards
 - Operates at nearly ideal conditions
- A high percentage of drivers are commuters who use this freeway on regular basis.
- The data was collected by Caltrans

EMPHIS

INIVERSIT

Dreamers. Thinkers. Doers.

High Speed Freeway (2)

- Measurements are averaged over 5 min period
- The speed-density plot shows
 - a very consistent data pattern
 - Displays a slight S-shaped relationship

THE UNIVERSITY OF **MEMPHIS**.

High Speed Freeway: Speed-Density

- Uniform density from 0 to 130 veh/mi/lane
- Free flow speed little over 60 mph
- Jam density can not be estimated
- Free flow speed portion shows like a parabola
- Congested portion is relatively flat

Dreamers. Thinkers. Doers.

High Speed Freeway: Flow-Density

- Maximum flow appears to be just under 2000 veh per hour per lane (vhl)
- Optimum density is approx. 40-45 veh/mile/lane (vml)
- Consistent data pattern for flows up to 1,800 vhl

Dreamers. Thinkers. Doers.

High Speed Freeway: Flow-Speed

- Optimum speed is not well defined
 - But could range between 30-45 mph
- Relationship between speed and flow is not consistent beyond optimum flow

Break-Out Session (3 Groups)

- Find out important features from
 - Figure 10.4
 - Figure 10.5
 - Figure 10.6

Difficulty of Speed-Flow-Density Relationship (1)

- A difficult task
- Unique demand-capacity relationship vary
 - over time of day
 - over length of roadway
- Parameters of flow, speed, density are difficult to estimate
 - As they vary greatly between sites

THE UNIVERSITY OF

Difficulty of Speed-Flow-Density Relationship (2)

- Other factors affect
 - Design speed
 - Access control
 - Presence of trucks
 - Speed limit
 - Number of lanes
- There is a need to learn theoretical traffic stream models

Individual Models

- Single Regime model
 - Only for free flow or congested flow
- Two Regime Model
 - Separate equations for
 - Free flow
 - Congested flow
- Three Regime Model
 - Separate equations for
 - Free flow
 - Congested flow
 - Transition flow
- Multi Regime Model

Single Regime Models

- Greenshield's Model
 - Assumed linear speed-density relationships
 - All we covered in the first class
 - In order to solve numerically traffic flow fundamentals, it requires two basic parameters
 - Free flow speed
 - Jam Density

$$u = u_f - \left(\frac{u_f}{k_j}\right) * k$$

Single Regime Models: Greenberg

- Second regime model was proposed after Greenshields
- Using hydrodynamic analogy he combined equations of motion and one-dimensional compressive flow and derived the following equation $\binom{k_j}{k_j}$

$$u = u_0 * ln\left(\frac{\kappa_j}{k}\right)$$

Disadvantage: Free flow speed is infinite

Single Regime Models: Underwood

- Proposed models as a result of traffic studies on Merrit Parkway in Connecticut
- Interested in free flow regime as Greenberg model was using an infinite free flow speed
- Proposed a new model

$$u = u_f * e^{-\left(\frac{k}{k_0}\right)}$$

- Single Regime Models: Underwood (2)
- Requires free flow speed (easy to compute)
- Optimum density (varies depending upon roadway type)
- Disadvantage
 - Speed never reaches zero
 - Jam density is infinite

Single Regime Models: Northwestern Univ. $u = u_f * e^{-\frac{1}{2(\frac{k}{k_0})^2}}$

- Formulation related to Underwood model
- Prior knowledge on free flow speed and optimum density
- Speed does not go to "zero" when density approaches jam density

THE UNIVERSITY OF

Single Regime Model Comparisons (1)

- All models are compared using the data set of freeway with speed limit of 55mph (see fig. 10.4)
- Results are shown in fig. 10.7
- Density below 20vml
 - Greenberg and Underwood models underestimate speed
- Density between 20-60 vml
 - All models overestimate speed and capacity

Dreamers. Thinkers. Doers.

Single Regime Model Comparisons (2)

- Density from 60-90 vml
 - all models match very well with field data
- Density over 90 vml
 - Greenshields model begins to deviate from field data
- At density of 125 vml
 - Speed and flow approaches to zero

Single Regime Model Comparisons (3)

Flow	Data Set				
Parameter		Greenshields	Greenberg	Underwood	Northwestern
Max. Flow (qm)	1800- 2000	1800	1565	1590	1810
Free-flow speed (uf)	50-55	57	inf	75	49
Optimum Speed (u0)	28-38	29	23	28	30
Jam Density (kj)	185-250	125	185	inf	inf
Optimum Density (k0)	48-65	62	68	57	61
Mean Deviation	-	4.7	5.4	5.0	4.6

Multiregime Models (1)

- Eddie first proposed two-regime models because
 - Used Underwood model for Free flow conditions
 - Used Greenberg model for congested conditions
- Similar models are also developed in the era
- Three regime model
 - Free flow regime
 - Transitional regime
 - Congested flow regime

THE UNIVERSITY OF MEMPHIS

Dreamers. Thinkers. Doers.

Multiregime Models (2)

Multiregime Model	Free Flow Regime	Transitional Flow Regime	Congested Flow Regime
Eddie Model	$u = 54.9e^{-k/_{163.9}}$ $(k \le 50)$	NA	$u = 26.8ln\left(\frac{162.5}{k}\right)$ $(k \ge 50)$
Two-regime Model	u = 60.9 - 0.515k $(k \le 65)$	NA	$u = 40 - 0.265k$ $(k \ge 65)$
Modified Greenberg Model	<i>u</i> =48 (<i>k</i> ≤ 35)	NA	$u = 32ln\left(\frac{145.5}{k}\right)$ $(k \ge 35)$
Three-regime Model	$u = 50 - 0.098k$ $(k \le 40)$	u = 81.4 - 0.91k $(40 \le k \le 65)$	$u = 40 - 0.265k$ $(k \ge 65)$

www.memphis.edu

Multiregime Models (3)

- Challenge
 - Determining breakeven points
- Advantage
 - Provide opportunity to compare models
 - Their characteristics
 - Breakeven points

Summary

- Multiregime models provide considerable improvements over single-regime models
- But both models have their respective
 - Strengths
 - weaknesses
- Each model is different with continuous spectrum of observations

Model Calibration (1)

- In order calibrate any traffic stream model, one should get the boundary values,
 - free flow speed () and jam density ().
- Although it is difficult to determine exact free flow speed and jam density directly from the field, approximate values can be obtained
- Let the linear equation be y = a+bx; such that is
 - Y denotes density (speed) and x denotes the speed (density).

Dreamers. Thinkers. Doers.

Model Calibration (2)

 Using linear regression method, coefficient a and b can be solved as

$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$a = \bar{y} - b\bar{x}$$

Example

- For the following data on speed and density, determine the parameters of the Greenshields' model.
- Also find the maximum flow and density corresponding to a speed of 30 km/hr.

k	u	
(veh/km)	(km/hr)	
171	5	
129	15	
20	40	
70	25	

Dreamers. Thinkers. Doers.

Model Calibration (1)

x(<i>k</i>)	y(u)	$(x_i - \overline{x})$	$(y_i - \overline{y})$	$(x_i - \overline{x})^*(y_i - \overline{y})$	$(x_i - \overline{x})^2$
171	5	73.5	-16	-1198	5402.3
129	15	31.5	-6.3	-198.5	992.3
20	40	-78	18.7	-1449	6006.3
70	25	-28	3.7	-101.8	756.3
390	85			-2948.7	13157.2

$$\overline{x} = \frac{\sum x}{n} = \frac{390}{4} = 97.5$$

$$\overline{y} = \frac{\sum y}{n} = \frac{85}{4} = 21.3$$

$$b = \frac{2947.7}{13157.2} = -0.2$$

$$a = y - b\overline{x} = 21.3 + 0.2 * 97.5 = 40.8$$

$$u = 40.8 - 0.2k$$

$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$a = \bar{y} - b\bar{x}$$

www.memphis.edu

Model Calibration (2)

THE UNIVERSITY OF **MEMPHIS**.

$$u = 40.8 - 0.2k \Rightarrow u_f = 40 \text{ and } \frac{u_f}{k_j} = 0.2$$
$$k_j = \frac{40.8}{0.2} = 204 \text{ veh/mi}$$
$$q_m = \frac{u_f k_j}{4} = \frac{40.8 * 204}{4} = 2080.8 \text{ veh/hr}$$

Density corresponding to speed of 30 km/hr is given by

$$30 = 40.8 - 0.2k \Rightarrow k = \frac{40.8 - 30}{0.2} = 54 \ veh/km$$

www.memphis.edu