Left Turn Bay Design

CIVL 4162/6162
Single Left Turn Lane

Diagram of a single left turn lane with labels for storage, deceleration, taper, and total length. The lane includes a separator and has a median width.
Overflow and Blockage

Overflow

Blockage

Through Vehicle

Left-Turn Vehicle
Available Methods

<table>
<thead>
<tr>
<th>Existing Methods by Categories</th>
<th>Reference</th>
<th>Major Results</th>
</tr>
</thead>
</table>
| **Rule of Thumb Methods** | • TxDOT Roadway Design Manual
• NCHRP Report 279
• NCHRP Report 348 | • Equations (4) & (5) |
| **Analytical-Based Methods** | • Basha (1992)
• Gard (2001) | • Equations (8) and (9)
• Table 9 |
| Unsignalized Intersections | • Lertworawanich et al. (2003) | • Table 10 |
| Regression based | • NDOR Roadway Design Manual (2005) | • Equations (13) to (15)
• Table 11 |
| Queuing theory based | • Oppenlander et al (1989) | • Equations (16) to (18)
• Table 12 |
| Vehicle arrivals in a given interval | • Kikuchi et al. (1993) | • Tables 13 and 13 |
| Signalized Intersections | • Kikuchi et al. (2004) | • Table 14 |
| Queuing theory based | • Oppenlander et al. (1994, 1996, 1999 and 2002)
• Lakkundi et al. (2004) | • Tables 15 and 16
• Figures 7 and 8 |
| DTMC based | | |
| Vehicle arrivals in the red phase | | |
Rule of Thumb Method

\[L = K (V/N_C) S \text{ for signalized intersection} \]

and

\[L = K \left[V/(3600/I) \right] S \text{ for unsignalized intersection} \tag{3} \]

where:

- \(L \) = storage length (ft)
- \(V \) = left-turn flow rate during the peak hour (vph)
- \(K \) = a constant to reflect random arrival of vehicles (usually 2)
- \(N_C \) = number of cycles per hour (for signalized intersection)
- \(I \) = average vehicle waiting interval in seconds (for unsignalized intersection)
- \(S \) = average queue storage length per vehicle (average distance, front bumper-to-bumper of a car in queue)
Queuing Based Method: Signalized

\[n = \frac{\log P_n - \log (1-\lambda/\mu)}{\log (\lambda/\mu)} \] \hspace{1cm} (16)

where:

\(n \) = number of vehicles in the queue
\(P_n \) = probability of \(n \) vehicles in the queue
\(\lambda \) = arrival rate, equivalent passenger cars per second (pcps)
\(\mu \) = service rate, equivalent passenger cars per second (pcps)

and, \(\lambda \) and \(\mu \) can be estimated by following Equations:

\[\lambda = 1.1 \times \frac{V}{3600} \] \hspace{1cm} (17)

\[\mu = S \times \frac{(G/C)}{3600} \] \hspace{1cm} (18)

where:

“1.1” = adjustment factor for the equivalence of left-turn vehicles with a separate phase
\(V \) = left-turn volume, equivalent passenger cars per hour (pcph)
\(S \) = lane saturation flow, equivalent passenger cars per hour of green (pcphg)
\(G/C \) = ratio of green time to cycle length (cycle split) for the turning-lane phase
Regression Based Method-Unsignalized

• Since queuing is not prevalent

\[Q = f_2(D, G) \]

and

\[G = f_1(V) \]

where:

\(Q \) = maximum left-turn lane length, in vehicles
\(D \) = left-turn volume, in vehicles per interval
\(G \) = total acceptable gap times in opposing traffic in a specific interval, sec
\(V \) = opposing traffic volume, in vehicle per interval

The functions \(f_1 \) and \(f_2 \) were derived by regression analysis and the general forms of these two equations were given in Equation (7).

\[G = f_1(V) = \alpha^G V^{g^G} \]