

Left Turn Bay Design

CIVL 4162/6162

Single Left Turn Lane

Overflow and Blockage

Available Methods

Simulation-Based Methods

- Length				
Existing Methods by Categories			Reference	Major Results
Rule of Thumb Methods			TxDOT Roadway Design Manual NCHRP Report 279 NCHRP Report 348	• Equations (4) & (5)
Analytical-Based Methods	Unsignalized Intersections	Regression based	• Basha (1992) • Gard (2001)	• Equations (8) and (9) • Table 9
		Queuing theory based	Lertworawanich et al. (2003)	• Table 10
		Vehicle arrivals in a given interval	NDOR Roadway Design Manual (2005)	• Equations (13) to (15) • Table 11
	Signalized Intersections	Queuing theory based	Oppenlander at al (1989)	• Equations (16) to (18) • Table 12
		DTMC based	• Kikuchi et al.(1993)	• Tables 13 and 13
		Vehicle arrivals in the red phase	• Kikuchi et al.(2004)	• Table 14
			Oppenlander et al. (1994,	Tables 15 and 16

1996, 1999 and 2002)

• Lakkundi et al. (2004)

• Tables 15 and 16

• Figures 7 and 8

Rule of Thumb Method

$$L = K (V/N_C) S$$
 for signalized intersection

$$L = K \left[V/(3600/I) \right] S \text{ for unsignalized intersection}$$
 (3)

where:

and

L = storage length (ft)

V =left-turn flow rate during the peak hour (vph)

K = a constant to reflect random arrival of vehicles (usually 2)

 N_C = number of cycles per hour (for signalized intersection)

I = average vehicle waiting interval in seconds (for unsignalized intersection)

S = average queue storage length per vehicle (average distance, front bumper-to-bumper of a car in queue)

Queuing Based Method: Signalized

 $n = (\log P_n - \log (1 - \lambda/\mu))/\log (\lambda/\mu)$

where:

n = number of vehicles in the queue

 P_n = probability of n vehicles in the queue

 λ = arrival rate, equivalent passenger cars per second (pcps)

 μ = service rate, equivalent passenger cars per second (pcps)

and, λ and μ can be estimated by following Equations:

$$\lambda = 1.1 \times V/3600 \tag{17}$$

$$\mu = S \times (G/C)/3600$$
 (18)

where:

"1.1" = adjustment factor for the equivalence of left-turn vehicles with a separate phase

V =left- turn volume, equivalent passenger cars per hour (pcph)

S = lane saturation flow, equivalent passenger cars per hour of green (pephg)

G/C = ratio of green time to cycle length (cycle split) for the turning-lane phase

Regression Based Method-Unsignalized

• Since queuing is not prevalent

$$Q = f_2(D, G)$$

 $G = f_1(V)$

and

(6)

where:

Q = maximum left-turn lane length, in vehicles

D =left-turn volume, in vehicles per interval

G = total acceptable gap times in opposing traffic in a specific interval, sec

V = opposing traffic volume, in vehicle per interval

The functions f_1 and f_2 were derived by regression analysis and the general forms of these two equations were given in Equation (7).

$$G = f_1(V) = \alpha_1^G V^{\beta_1^G}$$

