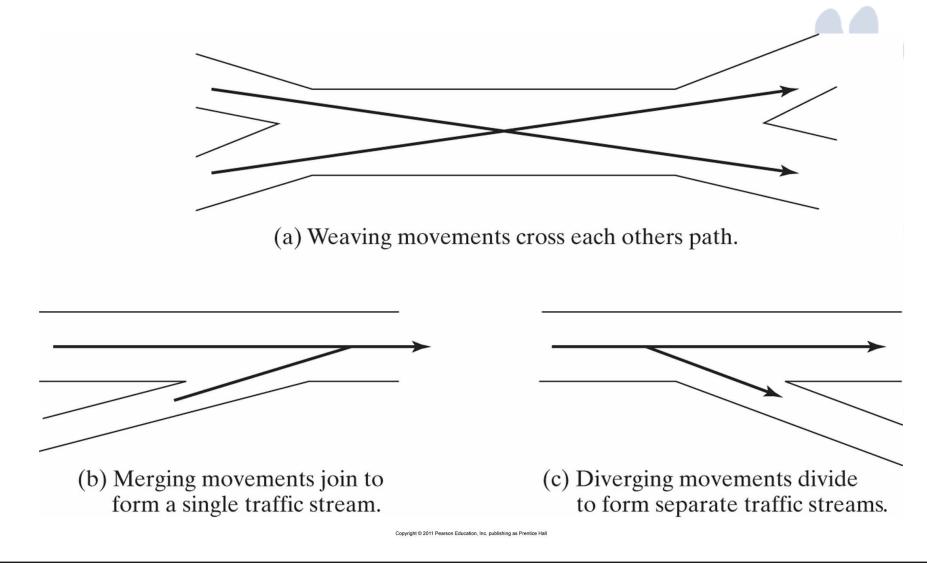


Analysis of Weaving, Merging, and Diverging Movements CIVL 4162/6162


Weaving, Diverging, Merging Segments

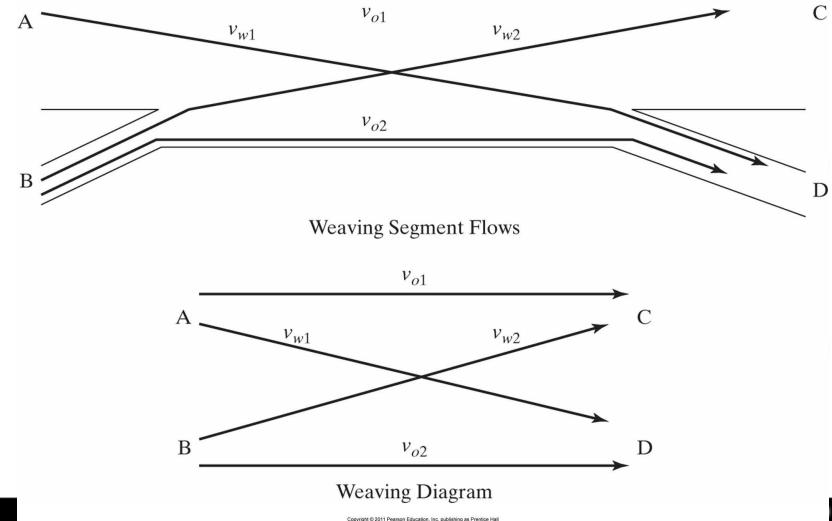
- Weaving one movement must cross the path of another along a length of facility without the aid of signals or other traffic control devices
- Merging two separate traffic streams join to form a single one
- Diverging one traffic stream separates to form two separate traffic streams
- Why do we consider these separately from BFS/Multilane Segments?

THE UNIVERSITY OF **MEMPHIS**

LOS for W/M/D Segments

Table 15.1: Level-of-Service Criteria for Weaving, Merging, and Diverging Segments

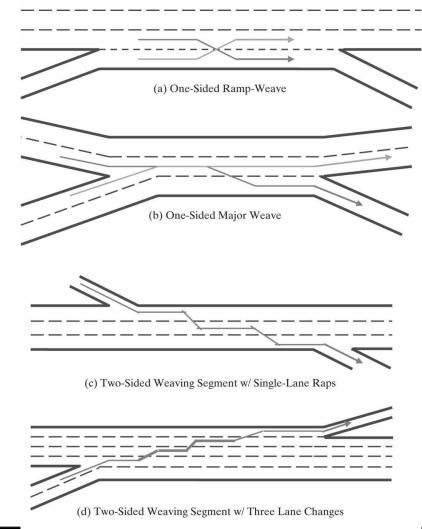
	Weaving Areas		Merge or Diverge Areas		
	Density Range (pc/mi/ln)				
Level of Service	On Freeways	On Multilane Highways or C-D Roadways	On Freeways, Multilane Highways, or C-D Roadways		
A	0-10	0-12	0–10		
B	>10-20	>12-24	>10-20		
C	>20-28	>24-32	>20-28		
D	>28-35	>32-36	>28-35		
E	>35	>36	>35		
F	Demand Exceeds Capacity				

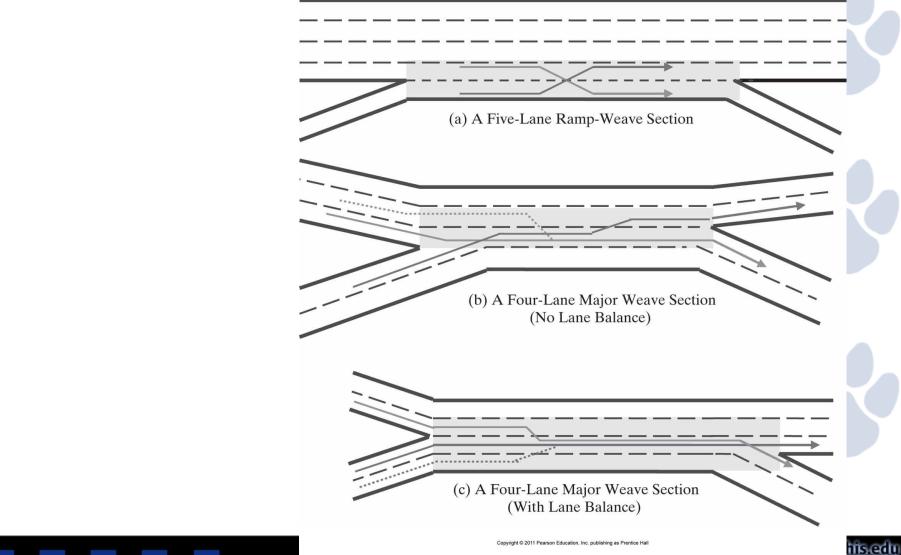

(*Source:* Used with permission of Transportation Research Board, National Research Council, *Highway Capacity Manual*, 2000. Compiled from Exhibit 24-2, p. 24-3, and Exhibit 25-4, p. 25-5.)

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

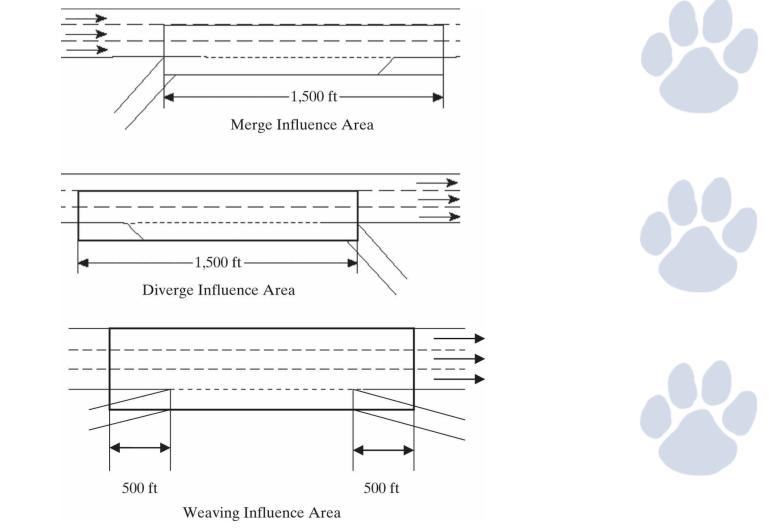
Table 15.1 Level-of-Service Criteria for Weaving, Merging, and Diverging Segments

THE UNIVERSITY OF **MEMPHIS**.


Flows in a Weaving Segment and the Weaving Diagram


THE UNIVERSITY OF MEMPHIS.

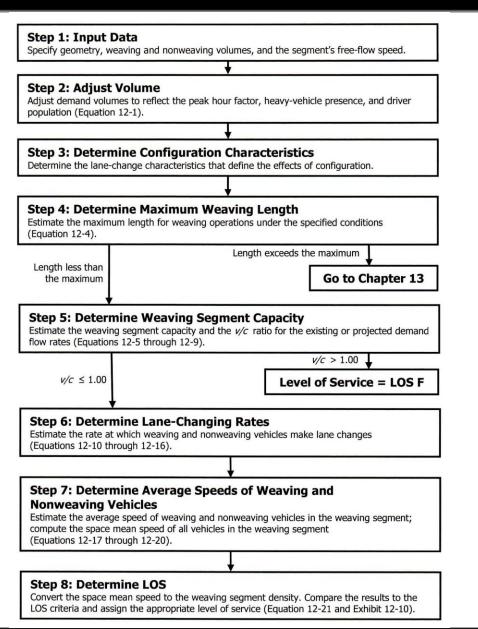
Weaving Configurations



Weaving Configuration Parameters

Dreamers. Thinkers. Doers.

Figure 15.2 Influence Areas for Merge, Diverge, and Weaving Segments *(Source:* Used with permission of Transportation Research Board, National Research Council, modified from *Highway Capacity Manual*, 2000, Exhibit 13-13, p. 13-21.)


Copyright © 2011 Pearson Education, Inc. publishing as Prentice Ha

Weaving Analysis- Input Requirements

- Existing roadway and traffic conditions are required, including:
 - Length and width of weaving area
 - Number of lanes
 - Type of configuration
 - Terrain/grade conditions
 - FFS
 - Hourly volumes

Dreamers. Thinkers. Doers.

Dreamers. Thinkers. Doers.

Figure 15.8 (continued) Weaving Variables Defined for One-Sided Weaving Segments (*Source:* Roess, R., et al., *Analysis of Freeway Weaving Sections,* Final Report, Draft Chapter for the HCM, National Cooperative Highway Research Program Project 3-75, Polytechnic University and Kittelson and Associates, Brooklyn, NY, September 2007, Exhibit 24-7, p. 12.)

Symbol Definition

v _{FF}	freeway-to-freeway demand flow rate in the weaving section (pc/h)
v _{RF}	ramp-to-freeway demand flow rate in the weaving section (pc/h)
v _{FR}	freeway-to-ramp demand flow rate in the weaving section (pc/h)
V _{RR}	ramp-to-ramp demand flow rate in the weaving section (pc/h)
v_W	weaving demand flow rate in the weaving section (pc/h): $v_W = v_{RF} + v_{FR}$
V _{NW}	non-weaving demand flow rate in the weaving section (pc/h); $v_{NW} = v_{FF} + v_{RR}$
V	total demand flow rate in the weaving section (pc/h), $v = v_W + v_{NW}$
VR	volume ratio: $VR = v_W/v$
Ν	number of lanes within the weaving section
N_W	number of lanes from which a weaving maneuver may be made with one or no lane changes.
S_W	average speed of weaving vehicles within the weaving section (mi/h)
S _{NW}	average speed of non-weaving vehicles within the weaving section (mi/h)
S	average speed of all vehicles within the weaving section (mi/h)
FFS	free-flow speed of the weaving section (mi/h)
	Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Figure 15.8 (continued) Weaving Variables Defined for One-Sided Weaving Segments (*Source:* Roess, R., et al., *Analysis of Freeway Weaving Sections,* Final Report, Draft Chapter for the HCM, National Cooperative Highway Research Program Project 3-75, Polytechnic University and Kittelson and Associates, Brooklyn, NY, September 2007, Exhibit 24-7, p. 12.)

Symbol Definition

- D average density of all vehicles within the weaving section (pc/mi/ln)
- W weaving intensity factor
- L_S length of the weaving section (ft), based on short length definition.
- LC_{RF} minimum number of lane changes that must be made by a single weaving vehicle moving from the on-ramp to the facility.
- LC_{FR} minimum number of lane changes that must be made by a single weaving vehicle moving from the facility to the ramp.
- LC_{MIN} minimum rate of lane changing that must exist for *all* weaving vehicles to successfully complete their weaving maneuvers (lc/h) $LC_{MIN} = (LC_{RF} \times v_{RF}) + (LC_{FR} \times v_{FR})$
- LC_W total rate of lane changing by weaving vehicles within the weaving section (lc/h)
- LC_{NW} total rate of lane changing by non-weaving vehicles within the weaving section (lc/h)
- LC_{ALL} total lane-changing rate of all vehicles within the weaving section (lc/h) $LC_{ALL} = LC_W + LC_{NW}$

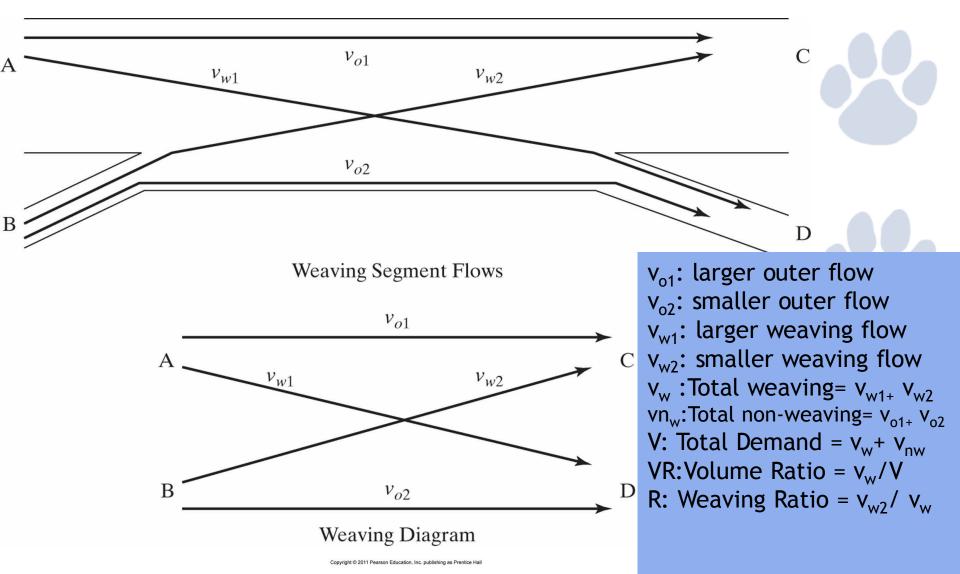
Step-1: Input Data

 Ensure to write all the input data in one place before analyzing the weaving section

Step-2: Determining Flow Rate

THE UNIVERSITY OF

MEMPHIS


$$v_i = \frac{V_i}{PHF \times N \times f_{HV} \times f_p}$$

v_i: Demand flow rate, pc/h, under equivalent based conditions
 Vi: Demand volume, veh/hr under prevailing conditions
 PHF: Peak Hour Factor
 f_{HV}: Heavy-vehicle adjustment factor
 f_n: Driver-population adjustment factor

Dreamers. Thinkers. Doers.

Step-3: Determine Configuration Characteristics

- One Sided Weaving
 - LC_{RF} minimum # of lane changes that a ramp-to-facility weaving vehicle must make to successfully complete the ramp-to-facility movement.
 - LC_{FR}- minimum # of lane changes that a facility-to-ramp weaving vehicle must make to successfully complete the facility-to-ramp movement.
 - N_{WV} number of lanes from which a weaving maneuver may be completed with one lane change, or no lane change.

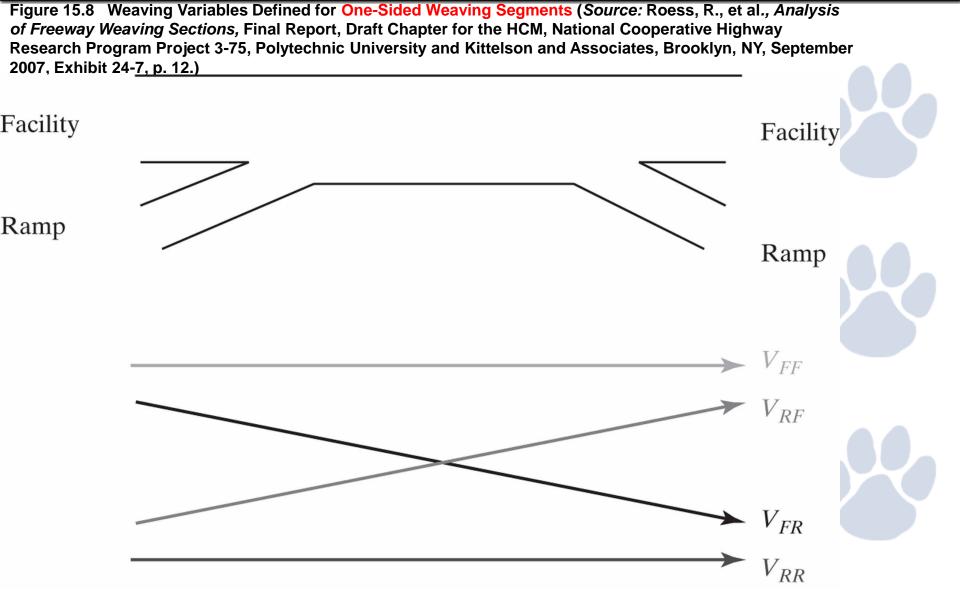
$$LC_{MIN} = \left(LC_{FR} \,\,\widetilde{}\,\, U_{FR}\right) + \left(LC_{RF} \,\,\widetilde{}\,\, U_{RF}\right)$$

Dreamers. Thinkers. Doers.

Step-3: Determine Configuration Characteristics

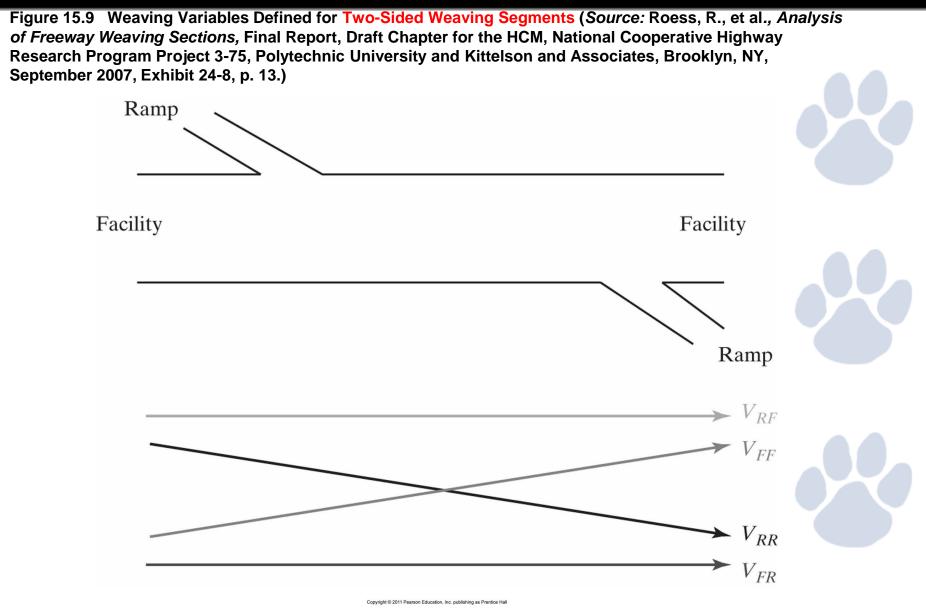
Two Sided Weaving

- L_{RR} minimum number of lane changes required for 'ramp-to-ramp' movement.
- N_{WV}=0 (only vehicles moving ramp to ramp are considered to be weaving


$$LC_{MIN} = (LC_{RR} \, \, \check{} \, U_{RR})$$

Symbol Definition

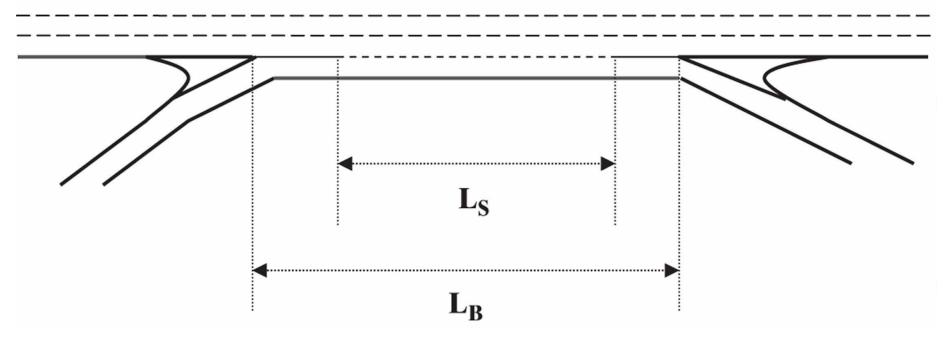
- v_W total weaving demand flow rate within the weaving section (pc/h) $v_W = v_{RR}$
- v_{NW} total non-weaving demand flow rate within the weaving section (pc/h) $v_{NW} = v_{FR} + v_{FF} + v_{FF}$
- LC_{RR} minimum number of lane changes that must be made by *one* ramp-to-ramp vehicle to complete a weaving maneuver.
- LC_{MIN} minimum rate of lane changing that must exist for *all* weaving vehicles to successfully complete their weaving maneuvers (lc/h) $LC_{MIN} = (LC_{RR} \times v_{RR})$


Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Dreamers. Thinkers. Doers.

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Dreamers. Thinkers. Doers.



Step-4: Maximum Weaving Length

 $L_{MAX} = \left[5,728 \left(1 + VR \right)^{1.6} \right] - 1,566 N_{VW}$

THE UNIVERSITY OF

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Figure 15.6 Measuring the Length of a Weaving Segment (*Source:* Roess, R., et al., *Analysis of Freeway Weaving Sections,* Final Report, Draft Chapter for the HCM, National Cooperative Highway Research Program Project 3-75, Polytechnic University and Kittelson and Associates, Brooklyn, NY, September 2007, Exhibit 24-2, p. 2.)

Dreamers. Thinkers. Doers.

Step-5: Capacity of the Weaving Segment

Based on Breakdown Density

Calculate C_{IWL} (cap per lane of weaving section under ideal conditions: $c_{IWL} = c_{IFL} - [438.2(1 + VR)^{1.6}] + [0.0765L_S] + [119.8N_{WV}]$

Convert C_{IWL} to total capacity for the weaving segment under prevailing conditions:

$$c_{W1} = c_{IWL} \times N \times f_{HV} \times f_p$$

THE UNIVERSITY OF

Capacity Values - C_{IFL}

Table 15.2: Basic Facility Capacity Values (c_{IFL}) for Use in Equation 15-5

I	Freeways	Multilane Highways and C-D Roadways	
FFS (mi/h)	Capacity (pc/h/ln)	FFS (mi/h)	Capacity (pc/h/ln)
\geq 70	2,400	≥60	2,200
65	2,350	55	2,100
60	2,300	50	2,000
55	2,250	45	1,900

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Dreamers. Thinkers. Doers.

Step-5: Capacity of the Weaving Segment

Based on Maximum Weaving Flow Rate

Calculate C_{IW} (based on # weaving lanes):

$$c_{IW} = \frac{2,400}{VR} \text{ for } N_{WL} = 2 \text{ lanes}$$
$$c_{IW} = \frac{3,500}{VR} \text{ for } N_{WL} = 3 \text{ lanes}$$

Convert C_{IW} to total capacity for the weaving segment under prevailing conditions:

$$c_{W2} = c_{IWL} \times f_{HV} \times f_p$$

Final Capacity and v/C ratio

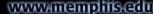
$$c_W = Min (cw1, cw2)$$

 $v/c = \frac{vf_{HV}f_p}{C}$
If v/c >1.0.^{*C*} LOS =F, and STOP

Dreamers. Thinkers. Doers.

Step-6: Total Lane Changing

For Weaving Vehicles


Total lane changing rate for weaving vehicles

 $LC_W = LC_{MIN} + 0.39[(L_S - 300)^{0.5}N^2(1 + ID)^{0.8}]$

For Non-Weaving Vehicles

 $LC_{NW1} = 0.206v_{NW} + 0.542L_S - (192.6N)$

 $LC_{NW2} = 2135 + 0.223(v_{NW} - 2000)$

Dreamers. Thinkers. Doers.

Step-6: Total Lane Changing

Lane Changing Index

Total lane changing rate for weaving vehicles

 $I_{NW} = \frac{L_S ID v_{NW}}{10,000}$ • I_{NW} Ranges - If I_{NW} <1,300 • LC_{NW} = LC_{NW1}

- If If I_{NW} >1,950
 - $LC_{NW} = LC_{NW2}$
- If 1300<I_{NW} <1,950

$$LC_{NW} = LC_{NW1} + (LC_{NW2} - LC_{NW1}) \left(\frac{I_{NW} - 1300}{650}\right)$$

Total Lane Changing

 $LC_{ALL} = LC_{NW1} + LC_{NW2}$

Step-7: Average Speed

• Weaving Vehicles

$$S_W = S_{MIN} + \left(\frac{S_{MAX} - S_{MIN}}{1 + W}\right)$$

$$W = 0.226 \left(\frac{LC_{ALL}}{L_S}\right)^{0.789}$$
$$S_W = 15 + \left(\frac{FFS - 15}{1 + W}\right)$$

• Non-Weaving Vehicles

 $S_{NW} = FFS - (0.0072LC_{MIN}) + (0.0048\nu/N)$

Average Speed

$$S = \frac{v_W + v_{NW}}{\frac{v_W}{S_W} + \frac{v_{NW}}{S_{NW}}}$$

THE UNIVERSITY OF

Step-8: Determine Density

where D is the average density for all vehicles in the weaving segment (pc/mi/ln).

 $D = \frac{\left(\frac{V}{N}\right)}{S}$

THE UNIVERSITY OF **MEMPHIS**

LOS for W/M/D Segments

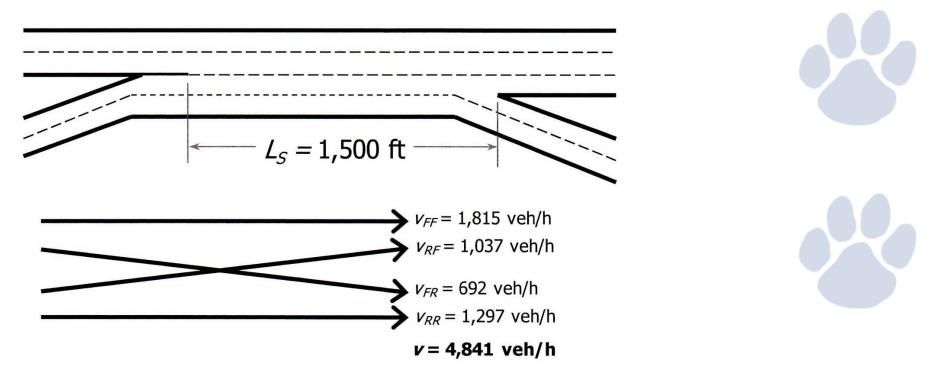
Table 15.1: Level-of-Service Criteria for Weaving, Merging, and Diverging Segments

	Weaving Areas		Merge or Diverge Areas		
	Density Range (pc/mi/ln)				
Level of Service	On Freeways	On Multilane Highways or C-D Roadways	On Freeways, Multilane Highways, or C-D Roadways		
A	0-10	0-12	0–10		
B	>10-20	>12-24	>10-20		
C	>20-28	>24-32	>20-28		
D	>28-35	>32-36	>28-35		
E	>35	>36	>35		
F	Demand Exceeds Capacity				

(*Source:* Used with permission of Transportation Research Board, National Research Council, *Highway Capacity Manual*, 2000. Compiled from Exhibit 24-2, p. 24-3, and Exhibit 25-4, p. 25-5.)

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Table 15.1 Level-of-Service Criteria for Weaving, Merging, and Diverging Segments

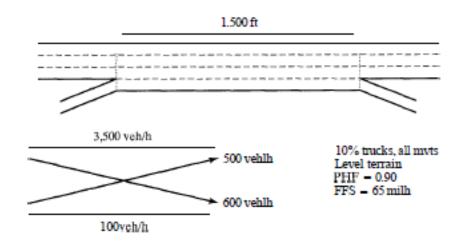

Example

EMPHIS

THE UNIVERSITY OF

What are the level of service and capacity of the weaving segment on the urban freeway shown below? ID = 0.8 int./mi

-10 percent trucks; PHF=0.91; level terrain; fp=1, FFS=65 mph



Example

 A typical ramp weave section on a six lane freeway (three lanes in each direction).
 Determine LOS under prevailing conditions

