AASHTO Design Example

(Rigid Pavements)

Problem Statement

We are going to design a limited-access highway in an exurban area. The predominate terrain is rolling hills. In order to accommodate expected commuter traffic of 20,000 to 30,000 vehicles/day, we require 3 traffic lanes in each direction. The two-way ADTT is expected to be 1000 trucks/day in the first year of operation. Based on statewide averages, the average LEF for rigid pavements is 0.98. It is assumed that truck traffic will grow at a rate of 3% per year over the 25-year design life.

Design ESALs

$$\mathsf{ESAL} = 365 (\mathsf{ADTT})(\mathsf{T}_{\mathsf{f}})(\mathsf{D})(\mathsf{L}) \left[\frac{(1+g)^{\mathsf{n}} - 1}{g} \right]$$

Number of Lanes in <mark>Each</mark> Direction	Percent of Loads in Design Lane
1	100
2	80-100
3	60-80
4	50-75

Problem Statement

Local practice is to use a granular subbase that will drain within a few hours. The subbase has a resilient modulus of 15,000 psi when wet and 25,000 psi when dry. The roadbed soil has a resilient modulus of 3000 psi during the 7 months "wet" months and 7000 psi the rest of the year. Based on rainfall data, we expect that the subbase will approach saturation one week per month during the wet season.

Problem Statement

According to local practice, the pavement will be designed as JPCP with tied concrete shoulders. The slab length will be 30 feet and dowels will provide load transfer at the joints. The concrete slab is designed for a compressive strength of 5500 psi. We will assume that the initial pavement serviceability index will be 4.5. Based on the high traffic volume, we will select a terminal serviceability level of 2.5.

Design Equation

$$\log_{10} W_{18} = Z_R S_0 + 7.35 \log_{10} (D+1) - 0.06 + \frac{\log_{10} \left(\frac{\Delta PSI}{4.5 - 1.5}\right)}{1.0 + \frac{1.62 \times 10^7}{(D+1)^{8.46}}}$$

1993 + (4.22 - 0.32p_t) log₁₀
$$\left[\left(\frac{S'_c \cdot C_d}{215.63 \cdot J}\right) \frac{(D^{0.75} - 1.132)}{(D^{0.75} - \frac{18.42}{4\sqrt{E_c/k}})} \right]$$

 Z_r = standard normal deviate $S_o = standard \ deviation \ of \ W_{18}$ $E_c = concrete modulus of elasticity (psi)$ S'_{c} = concrete modulus of rupture (psi) $C_d = drainage \ coefficient$ *J* = *joint load transfer coefficient* LS = loss of support factork = modulus of subgrade reaction (psi/in)

 Z_r = standard normal deviate $S_o = standard \ deviation \ of \ W_{18}$ $E_c = concrete modulus of elasticity (psi)$ S'_{c} = concrete modulus of rupture (psi) $C_d = drainage \ coefficient$ *J* = joint load transfer coefficient k = modulus of subgrade reaction (psi/in)LS = loss of support factor

Recommended Reliability

Functional Classification	Urban	Rural
Interstate and Other Freeways	85 – 99.9%	80 – 99.9%
Principal Arterials	80 – 99%	75 – 99%
Collectors	80 – 95%	75 – 95%
Local	50 – 80%	50 – 80%

Reliability, Z_R

Reliability (%)	Z _R
50	-0.000
60	-0.253
70	-0.524
75	-0.674
80	-0.841
85	-1.037
90	-1.282
91	-1.340
92	-1.405

Reliability (%)	Z _R
93	-1.476
94	-1.555
95	-1.645
96	-1.751
97	-1.881
98	-2.054
99	-2.327
99.9	-3.090
99.99	-3.750

Standard Deviation, S_o

Source	Flexible	Rigid
AASHO Road Test S _n	0.35	0.25
AASHO Road Test S _o	0.45	0.35
Typical Range for S _o	0.40 – 0.50	0.30 – 0.40

 Z_r = standard normal deviate $S_o = standard \ deviation \ of \ W_{18}$ $E_c = concrete modulus of elasticity (psi)$ S'_{c} = concrete modulus of rupture (psi) $C_d = drainage \ coefficient$ *J* = joint load transfer coefficient k = modulus of subgrade reaction (psi/in)LS = loss of support factor

Typical Concrete Properties

 $S_{c} = 8.4 \sqrt{f_{c}}$ (psi)

 $f_t = 6.7 \sqrt{f_c'}$ (psi)

 $E_{c} = 57,000\sqrt{f_{c}}$ (psi)

 Z_r = standard normal deviate $S_o = standard \ deviation \ of \ W_{18}$ $E_c = concrete modulus of elasticity (psi)$ S'_{c} = concrete modulus of rupture (psi) $C_d = drainage \ coefficient$ J = joint load transfer coefficient k = modulus of subgrade reaction (psi/in)LS = loss of support factor

Drainage Quality

Quality	Water Removed Within
Excellent	2 hours
Good	1 day
Fair	1 week
Poor	1 month
Very Poor	No drainage

Drainage Coefficient, C_d

Quality	Percentage of Time Material Approaches Saturation			
Quanty	< 1%	1-5%	5-25%	> 25%
Excellent	1.25-1.20	1.20-1.15	1.15-1.10	1.10
Good	1.20-1.15	1.15-1.10	1.10-1.00	1.00
Fair	1.15-1.10	1.10-1.00	1.00-0.90	0.90
Poor	1.10-1.00	1.00-0.90	0.90-0.80	0.80
Very Poor	1.00-0.90	0.90-0.80	0.80-0.70	0.70

Load Transfer Coefficient, J

	Asphalt Shoulders		Tied PCC Shoulders		
	Dowels	No Dowels	Dowels	No Dowels	
JPCP	2 2	2011	25 21	$2 \in 1 2$	
JRCP	3.2	3.8 - 4.4	2.3 - 3.1	3.0 - 4.2	
CRCP	2.9 - 3.2		2.3 -	- 2.9	

NOTE: Use higher *J* values when you have (a) low *k* values, (b) lots of trucks, (c) high concrete thermal coefficients, or (d) large variations in temperature.

 Z_r = standard normal deviate $S_o = standard \ deviation \ of \ W_{18}$ $E_c = concrete modulus of elasticity (psi)$ S'_{c} = concrete modulus of rupture (psi) $C_d = drainage \ coefficient$ *J* = joint load transfer coefficient k = modulus of subgrade reaction (psi/in)LS = loss of support factor

TABLE 15.17 Recommended Loss of Subgrade Support Factors

Type of Material

Type of Material	Loss of Support (LS)
Cement-treated granular base (E=1,000,000-2,000,000 psi)	0.0-1.0
Cement aggregate mixtures (E=500,000-1,000,000 psi)	0.0-1.0
Asphalt-treated base (E=350,000–1,000,000 psi)	0.0-1.0
Bituminous stabilized mixtures (E=40,000–300,000 psi)	0.0-1.0
Lime stabilized (E=20,000–70,000 psi)	1.0-3.0
Unbound granular materials (E=15,000–45,000 psi)	1.0-3.0
Fine-grained or natural subgrade materials ($E=3000-40,000$ psi)	2.0-3.0

- Source: Reprinted from Portland Cement Association (PCA), Design and Control of Concrete Mixtures, Engineering Bulletin 001, 14th edn., PCA, Skokie, IL, 2002.
- *Note:* E in this table refers to the general symbol for the elastic or resilient modulus of the material.

Trial <u>Subbase</u> :	Type <u>Unbound</u>	l Granular	Depth to Rigid Foundation (feet)	∞
	Thickness (in)	6.0	Projected Slab Thickness (in)	
	Loss of Support	1.0		

Length of Roadbed Subbase Damage Modulus Season Modulus k∞ **k**_{rf} Factor (months) M_R (psi) (psi/in) E_{SB} (psi) (psi/in) (u_r)

Average damage factor, \bar{u}_{r}

Effective modulus of subgrade reaction (psi/in)

Effective modulus corrected for loss of support (psi/in)

Composite k Value (pci)

