- 1. For the Proctor test data given below $(G_s = 2.68)$:
 - (a) Plot the compaction curves.
 - (b) Establish the maximum dry density and optimum water content for each test.
 - (c) Compute the degree of saturation at the optimum point for each test.
 - (d) Plot the 80%, 90%, and 100% saturation curves.

Standard		Inter	Intermediate		Modified	
w (%)	$\gamma_{\rm d}$ (kN/m ³)	w (%)	$\gamma_{\rm d}$ (kN/m ³)		w (%)	γ_d (kN/m ³)
9.9	15.96	8.3	16.86		7.9	17.42
11.3	16.12	10.8	17.17		10.0	17.67
13.4	16.52	13.3	17.49		12.2	18.08
16.1	16.87	16.6	17.41		15.0	17.99
19.1	16.75	19.8	16.80		17.7	17.36
21.7	16.16	22.0	16.16		19.6	16.97

- 2. For the soil in Problem 1, determine the moisture content range permitted if a contractor must achieve 90% of the Modified Proctor maximum density.
- 3. If the soil in the previous problem has a moisture content of 10% when it was obtained from the borrow pit, how much water (in liters) must be added to a cubic meter of soil to bring it to the optimum moisture content so it can be placed and compacted?
- 4. The values of e_{max} and e_{min} for a clean sand ($G_s = 2.70$) are 0.42 and 0.71, respectively. What is the corresponding range in dry unit weight? If the soil is compacted in the field to a wet unit weight of 19.40 kN/m³ at a moisture content of 10.2% what is the relative density in the field?
- 5. You have just performed a sand cone test in a compacted fill made of the soil shown in Example 5.1 in your textbook. The soil removed from the hole had a mass of 2675 g and a 131.2-g sample of that soil lost 17.1 g of mass upon drying. Below are the relevant data recorded from the sand cone:
 - Calibrated dry density of the Ottawa sand = 1570 kg/m³
 - Calibrated mass of sand to file the cone and plate = 645 g
 - Initial mass of sand cone apparatus = 8456 g
 - Final mass of sand cone apparatus = 5639 g
 - (a) What are the dry unit weight and water content of the compacted fill?
 - (b) Referring to Example 5.1 in your textbook, what relative compaction did the contractor achieve?
 - (c) If the compaction specifications call for a minimum of 95% relative compaction at a moisture content between w_{opt} + 1% and w_{opt} 3% did the contract meet the specifications?