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5. Flexural Analysis and Design of Beams

5.1. Reading Assignment

Chapter 3 of text

5.2. Introduction

It is of interest in structural practice to calculate those stresses and deformationswhich occur

in a structure in service under design load. For reinforced concrete beams this can be done by the

methods just presented, which assume elastic behavior of both materials. It is equally, if not more,

important that the structural engineer be able to predict with satisfactory accuracy the ultimate

strength of a structural member. By making this strength larger by an appropriate amount than the

largest loadswhich can be expected during the lifetime of the structure, an adequatemargin of safety

is assured. Until recent times, methods based on elastic analysis like those just presented have been

used for this purpose. It is clear, however, that at or near the ultimate load, stresses are no longer

proportional to strains.

At high loads, close to ultimate, the distribution of stresses and strains is that of figure 2 rather

that the elastic distribution of stresses and strains given in figure 1 below. More realistic methods of

analysis, based on actual inelastic rather than an assumed elastic behavior of thematerials and results

many experimental research, have been developed to predict the ultimate strength.
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As progressively increasing bending moments are applied to the beam, the strains will increase as

exemplified by ε1, ε2, and ε3 as shown below. Corresponding to these strains and their linear varia-

tion from the neutral axis, the stress distribution will look as shown.
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5.3. Flexure Strength

As it was mentioned earlier it is important that the structural engineer be able to predict with

satisfactory accuracy the ultimate strength of a structural member. It is important to know that at or

near the ultimate load, stresses are no longer proportional to strains.

Actual inspection of many concrete stress-strain curves which have been published, show

that the geometrical shapeof the stress distribution is quite varied anddependson anumber of factors

such as cylinder strength, the rate, and duration of loading.

Below is a typical stress distribution at the ultimate load.
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Cc = αfc′bc

Figure 5.2. Strain, Stress, and Force Diagrams

5.4. Two Different Types of Failure

There are two possible ways that a reinforced beam can fail:

• Beam will fail by tension of steel

Moderate amount of reinforcement is used. Steel yields suddenly and stretches a large

amount, tension cracks become visible and widen and propagate upward (Ductile Fail-

ure)

• Compression failure of concrete

Large amount of reinforcement is used. Concrete fails by crushingwhen strains become

so large (0.003 to 0.004). Failure is sudden, an almost explosive nature and occur with

no warning ( Brittle Failure).
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In a rectangular beam the area that is in compression is bc, and the total compression force on this

area can be expressed as C = favbc, where fav is the average compression stress on the area bc. Evi-

dently, the average compression stress that can be developed before failure occurs becomes larger

the higher the cylinder strength fc’ of the particular concrete. Let

α = fav
fc′

then

Cc = favbc = αfc′bc

compression force is applied at βc distance from top fiber, and c is the distance of the N.A.
from top fiber.

Based on research we have:

α = 0.72 − fc′ − 4, 000
1000

× 0.04 and 0.56 < α < 0.72

β = 0.425 − fc′ − 4, 000
1000

× 0.025 and 0.324 < β< 0.425

(5.7)

(5.8)

FORCES

From equilibrium we have Cc = T or

αfc′bc = Asfs (5.9)

M = TZ = As fs (d − βc) (5.10)

or

M = CcZ = αfc′bc (d − βc) (5.11)
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5.5. Tension Failure

fs = fy steel yielding (5.12)

From Eq. (5.9) we have

c =
As fy
αbfc′

× d
d
= As

bd
fyd

αfc′
= Ã

fy
fc′
d
α

(5.13)

Substitute c from Eq. (5.13) in Eq. (5.10)

Mn = As fy d − Ã
β
α
fy
fc′
d (5.14)

with the specific, experimentally obtained values for α and β we always have

β
α = 0.59 for fc′ = 4, 000 psi or any other strength (5.15)

Therefore, Eq. (5.14) simplifies as

Mn = As fy d − 0.59Ã
fy
fc′
d (5.16)

or

Mn = Ãbd2 fy 1 − 0.59Ã
fy
fc′
 (5.17)

where Mn = nominal moment capacity.

5.6. Compression Failure

In this case, the criterion is that the compression strain in the concrete becomes εu = 0.003, as

previously discussed. The steel stress fs, not having reached the yield point, is proportional to the

steel strain, εs; i.e. according to Hooke’s law:

Áu = 0.003 (ACI 10.2.3), and fs< fy (5.18)

fs = Es Ás Hooks law, since fs < fy (5.19)
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from similar triangles we have

Áu
c =

Ás
d − c

→ Ás = Áu
d − c

c
(5.20)

substitute Eq. (5.20) in Eq. (5.19)

fs = Es Ás = Es Áu
d − c
c < fy

(5.21)

From Eq. (5.9) we have

αfc′bc = Asfs = As Es Áu
d − c

c
(5.22)

Using Eq. (5.22) solve for c, and then findMn, the nominal moment capacity.

5.7. Balance Steel Ratio

We like to have tension failure, because it gives us warning, versus compression failure

which is sudden. Therefore, we want to keep the amount of steel reinforcement in such manner that

the failure will be of tension type.

Balanced steel ratio, ρb represents the amount of reinforcement necessary to make a beam

fail by crushingof concrete at the same load that causes the steel toyield. Thismeans that neutral axis

must be located at the loadwhich the steel starts yielding and concrete starts reaching its compressive

strain of εu = 0.003. (ACI 10.2.3)

cb = Áu
Áy + Áu

d (5.23)

T = C → Abs fy = α fc′ bcb (5.24)

Abs fy = Ãb bd fy = α fc′ b
Áu

Áu + Áy
d (5.25)

Ãb = α
fc′
fy

Áu
Áu + Áy

(5.26)
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5.8. Strain Limits Method for Analysis and Design (ACI 318).

In “Strain LimitsMethod,” sometime referred to as the “UnifiedMethod,” the nominal flex-

ural strength of a concrete member is reached when the net compressive strain in the extreme com-

pression fiber reaches the ACI code-assumed limit of 0.003 in/in (ACI 10.2.3). It also hypothesized

that when the net tensile strain in the extreme tension steel, εt = 0.005 in/in, the behavior is fully duc-

tile. The concrete beam sections characterized as “Tension-Controlled,”with amplewarning of fail-

ure as denoted by excessive deflection and cracking.

If the net tensile strain in the extreme tension fibers, εt, is small, such as in compressionmem-

bers, being equal or less than a “Compression-Controlled” strain limit, a brittle mode of failure is

expected with a sudden and explosive type of failure. Flexural members are usually tension-con-

trolled. However, some sections such as those subjected to small axial loads, but large bendingmo-

ments, the net tensile strain, εt, in the extreme tensile fibers, will have an intermediate or transitional

value between the two strain limit states, namely, between the compression-controlled strain limit of

Át =
fy
Es
= 60 ksi

29, 000 ksi
= 0.002 (5.27)

and the tension-controlled strain limit εt = 0.005 in/in. Figure 5.3 (ACI Figure R9.3.2 page 118)

shows these three zones as well as the variation in the strength reduction factors applicable to the

total range of behavior.
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5.8.1. Variation of Φ as a Function of Strain

Variation of theφvalue for the range of strain between εt =0.002 in/in and εt =0.005 in/in can

be linearly interpolated:

0.65 ≤ φ = 0.65 + (Át− 0.002)(250∕3)) ≤ 0.90
Tied Column

Spiral Columnm

0.75 ≤ (φ = 0.75 + (Át − 0.002)(50)) ≤ 0.90
(5.28)

5.8.2. Variation of Φ as a Function of Neutral Axis Depth Ratio c/d

0.65 ≤ φ = 0.65 + 0.25 1
c∕dt
− 5

3
 ≤ 0.9 Tied Column

Spiral Columnm0.75 ≤ φ = 0.75+ 0.15 1
c∕dt
− 5

3
 ≤ 0.9

(5.29)

Figure 5.3. Example. Calculate Nominal Moment Capacity of a Beam for Fy = 60 ksi

Át= 0.005

c
dt
= 0.375

Át= 0.002

c
dt
= 0.600

0.75

0.90

0.65
φ

φ = 0.75+ (Át− 0.002)(50)

SPIRAL

OTHER

Compression

Controlled
Transition

Tension

Controlled

φ = 0.65+ (Át− 0.002)(250∕3)
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5.9. Example. Calculate Nominal Moment Capacity of a Beam

fc′ = 4, 000 psi

Determine the nominal moment Mn at which the beam given below will fail.

Given

fy = 60, 000 psi

Solution

Ã = As
bd
= 2.35

10× 23
= 0.0102

Mn = Ã fy bd21 − 0.59
Ã fy
fc′


Mn = (0.0102)× (60 ksi)× (10 in)× (23 in)2× 1 − 0.59× (0.0102)× 60
4


= 2, 950, 000 lb− in = 246 k− ft

c = Ã
fy
fc′
d
α

c = 0.0102× 60
4
× 23

0.72
= 4.89 in

25”

10”

23”

As=2.35 in2

c
d
= 4.89

23
= 0.213< c

dt
= 0.375 Tension failure
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5.10. Prediction of Nominal Strength in Flexure by Equivalent Rectangular Stress
Block

• Represents an extension of the empirical method.

• Simpler than empirical method - No secondary calculation necessary to locate centroid
(always at stress block center).

• Allows for considerations and analyses of non-rectangular sections.

• Must be developed such that it gives the same answer as empirical method - requires
same total compression force and same centroid location.

• Development of the method:

Empirical Approach Equivalent Rectangular
Block. (Whitney Block)

Figure 5.4. Equivalent Rectangular Block (From Nawy’s Book).

βc

Ás

fs
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Stresses
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c

d h

compression side

tension side

As

0.85fc′

TsTs = Asfy

d--a/2

a/2

CcCc= αf′ccb
a= β1c

Require the forces to have the same location:

a = β1c (ACI 10.2.7)
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Cc = αfc′cb = γfc′ab from which γ = α ca

γ = α
β1

β1 = 2β and γ = 0.85 ACI 10.2.7

ACI 10.2.7.3

β1 = 0.85 − 0.05
fc′ − 4000

1000
and 0.65 ≤ β1 ≤ 0.85 ACI 10.2.7.3

Cc = 0.85fc′ab remember γ = 0.85 and a = β1c

For balanced steel ratio we have

T = C

Ãb fy bd= 0.85 fc′ abb= 0.85 fc′ β1 bcb

Ãb = 0.85β1
fc′
fy
 87, 000
87, 000 + fy



Ãb = 0.85 β1
fc′
fy

Áu
Áu + Áy

substituting εu = 0.003 and Es = 29,000 ksi

Áu

Áy

d-cb

cb

0.85fc′

d

Ts

(5.30)

ACI 10.3.5. Maximum Net Tensile Strain

For nonprestressed flexural members and prestressed members with axial load less than

0.10f′cAg the net tensile strain Át at nominal strength shall not be less than 0.004.

Ãmax = 0.85β1
fc′
fy
 Áu
Áu + 0.004


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fy= 60ksi

Áu

Áy

d-cb

cb

0.85fc′

d

Ts

Tension Failure

Compression Failure

Balanced Condition

Max Net Tensile Strain

Áu

Áy

d-cb

cb

0.85fc′

d

Ts

Áu

Át= 0.005

0.85fc′

d

Ts

cb
dt
= 87, 000

87, 000 + fy

cb
dt
= 87

87 + 60
= 0.60

fy= 60, 000 psi

Áu

Áy

cb

c> cb= 0.6d

c= 0.375d

Át= 0.002

Áu

d-c

cb

0.85fc′

d

Ts

c
dt
= 0.003

0.003 + 0.004
= 0.429

fy= 60, 000 psi

Max net Tensile Strain

Át= 0.004

c
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fy= 40ksi

Áu

Áy

d-cb

cb

0.85fc′

d

Ts

Tension Failure

Compression Failure

Balanced Condition

Áu

Áy

d-cb

cb

0.85fc′

d

Ts

Áu

Át= 0.004

0.85fc′

d

Ts

cb
dt
= 87, 000

87, 000 + fy

cb
dt
= 87

87 + 40
= 0.685

fy= 40 ksi

Áu

Áy

cbc= 0.428d

Át= 0.0014

c> cb= 0.685d

c= 0.625× 0.685= 0.428
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5.10.1. Example

Consider the same example problem given in Section 5.9.

Ã = As
bd
= 2.35

10× 23
= 0.0102

0.85fc′ ab = As fy → a =
(2.35 in2)× (60, 000 psi)

0.85× (4, 000 psi)× (10 in)
= 4.15 in

Mn= As fy (d− a
2
)= (2.35 in2))× (60, 000 psi)× (23− 2.07)= 246, 000 lb--ft=246 kip--ft

= 2, 950, 000 lb− in = 246 k− ft

c = a∕β1 = 4.15∕0.85= 4.88

c
d
= 4.88

23
= 0.212< 0.375

Tension failure

Therefore the nominal moment capabit will be:

φ= 0.9

Mu= φMn= 0.9× 246 = 221.4 kip− ft
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5.10.2. Example. Calculate Nominal Moment Capacity of a Beam

fc′ = 4, 000 psi

Determine if the beam shown below will fail in tension or compression.

Given

fy = 60, 000 psi

Solution

c = a
β1
= 10.59

0.85
= 12.46

21”

10”

18”

As=6.00 in2

c
d
= 12.46

18
= 0.69> 0.6 Compression failure

a =
As fy

0.85fc′ b

a = 6× 60 ksi
0.85× 4 ksi × 10

= 10.59 in

Hence, As does not yield and the strain is smaller than 0.02 in/in. Brittle failure results.
This beam does not satisfy ACI Code requirement.
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5.10.3. Example. Calculate Nominal Moment Capacity of a Beam

fc′ = 4, 000 psi

Determine if the beam shown below will fail in tension or compression.

Given

fy = 40, 000 psi

Solution

c = a
β1
= 7.06

0.85
= 8.31 in

21”

10”

18”

As=6.00 in2

c
d
= 8.31

18
= 0.46> 0.428< 0.685 Transition Zone

a =
As fy

0.85fc′ b

a = 6× 40 ksi
0.85× 4 ksi × 10

= 7.06 in

Hence, the beam is in the transition zone, tension steel yeilds. A reduced
value of φ should be used.


