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Chapter 9.
Shear and Diagonal Tension

9.1. READING ASSIGNMENT

Text Chapter 4; Sections 4.1 - 4.5

Code Chapter 11; Sections 11.1.1, 11.3, 11.5.1, 11.5.3, 11.5.4, 11.5.5.1, and 11.5.6

9.2. INTRODUCTION OF SHEAR PHENOMENON

Beams must have an adequate safety margin against other types of failure, some of which

may be more dangerous than flexural failure. Shear failure of reinforced concrete, more properly

called “diagonal tension failure” is one example.

If a beamwithout properly designed shear reinforcement is overloaded to failure, shear col-

lapse is likely to occur suddenlywith no advancewarning (brittle failure). Therefore, concretemust

be providedby “special shear reinforcement” to insure flexural failurewould occur before shear fail-

ure. In otherwords, wewant tomake sure that beamwill fail in a ductilemanner and in flexure not in

shear.

Shear failure of reinforced concrete beam: (a) overall view, (b) detail near right support



CIVL 4135 Shear169

9.3. REVIEW OF SHEAR

Shearing Stresses are
vital part of the beam
load carrying capacity.

Consider a homogenous beam in two sections as shown below.

9.4. Background

Consider a small section of the beam with shear
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9.5. BACKGROUND

For a homogenous, rectangular beam shear stress varies as:

νmax= 3
2
V
bd

νmax= V
bd

Average stress is
suitable
for concrete analysis

How will beam stresses vary?

Element 1 at N.A.

Element 2
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Principal
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Stress trajectories in homogeneous rectangular beam.

Tension stresses,which are of particular concern in the viewof the low tensile capacity of the

concrete are not confined only due to the horizontal bending stresses fwhich are caused by bending

alone.

Tension stresses of various magnitude and inclinations, resulting from

• shear alone (at the neutral axis); or
• the combined action of shear and bending

exist in all parts of a beamand if not taken care of appropriatelywill result in failure of the beam. It is

for this reason that the inclined tension stresses, known as diagonal tension, must be carefully con-

sidered in reinforced concrete design.
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ACI318

Figure R 11.4.2
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9.6. CRITERIA FOR FORMATION OF DIAGONAL CRACKS IN CONCRETE BEAMS

vave = V
bd

♦ can be regarded as rough measure of stress

♦ Distribution of “V” is not known exactly, as reinforced concrete is non-homogeneous.

♦ Shear near N.A. will be largest

Crack from N.A. propagates toward edges:

called web shear cracks

From diagonal tension: Concrete tensile strength is given as:

vcr = V
bd
= 3 f ′c ⇔ 5 f ′c

tests shown that the best estimate of cracking stress is

vcr = V
bd
= 3.5 f ′c

Note: The most common type of shear crack occurs only under high shear; with thin webs.

Large V (shear force), Small M (bending moment)
Little flexural cracking prior to formation of diagonal cracks.

Large V (shear force), Large M (bending moment)

Formation of flexure cracks precedes formation of shear cracks.

Flexure-
shear Crack

Flexure-Tension Crack

v at formation of shear cracks is
actually larger than for web shear
cracks. Presence of tension crack
reduces effective shear area
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Formation of flexure shear crack is unpredictable. Nominal shear stress at which diagonal tension

cracks form and propagate is given as

vcr =
Vcr
bd
= 1.9 fc′ from many tests. (52)

It was also found that the reinforcement ratio ρ has an effect on diagonal crack formation for the

following reason:

“As ρ is increased, tension crack depth decreases; area to resist shear increases.”

Based on many tests, ACI-ASCE committee justified the following equation

Vc
bd fc′

= 1.9 + 2500Ã Vd
M fc′

< 3.5 ACI Equation 11-5

Vd/M term tells that the diagonal crack formation depends on v and f at the tip of the flexural crack.

We can write shear stress as

v = k1
V
bd

(53)

where k1 depends on depth of penetration of flexural cracks. Flexural stress f can be expressed as

f = Mc
I
= k2

M
bd2

(54)

where k2 also depends on crack configuration. If we divide (53) by (54) we get

v
f
=

k1
k2

V
bd
× bd2

M
= KVd

M
(55)

where K is determined from experiments.

ACI allows us to use an alternate form of Eq. (52) for concrete shear stress

Vc
bd
= 2 fc′ ACI Eq. 11− 3 (56)

Shear cracks in beamswithout shear reinforcement cannot be tolerated, can propagate into compres-

sion face, reducing effective compression area, area to resist shear.
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9.7. WHAT ACTIONS CONTRIBUTE TO TOTAL SHEAR RESISTING FORCE - NO SHEAR REINFORCE-
MENTS

Cracked Beam without any shear reinforcement

1 Force resulting from aggregate interlock at crack.

2. Concrete shear stress in compression zone

3. Dowel shear from longitudinal flexural reinforcement.

Conservatively, we may neglect all but concrete stress. Nature of failure offers very little

reserve capacity if any. As a result, design strength in shear (without shear reinforcement) is gov-

erned by strength which present before formation of diagonal cracks.

WEB REINFORCEMENT

Shear reinforcement allows for

♦ Maximum utility of tension steel - Section capacity is not limited by shear

♦ Ductile failure mode - Shear failure is not ductile, it is sudden and dangerous.



CIVL 4135 Shear176

9.8. POSSIBLE CONFIGURATION OF SHEAR REINFORCEMENT

• Vertical stirrups, also called “ties” or “hoops”

• Inclined stirrups

• Bend up bars

Generally #3, #4, and #5 bars are used for stirrups and are

formed to fit around main longitudinal rebars with a hook at

end to provide enough anchorage against pullout of the bars.
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9.9. EFFECT OF STIRRUPS

1. Before shear cracking - No effect (web steel is free of stress)

2. After shear cracking

• Resist shear across crack;

• Reduce shear cracking propagation;

• Confines longitudinal steel - resists steel bond loss, splitting along steel,

increase dowel actions;

• Increase aggregate interlock by keeping cracks small.

3. Behavior of members with shear reinforcement is somewhat unpredictable -

Current design procedures are based on:

• Rational analysis;

• Test results;

• Success with previous designs.

9.10. DESIGN OF SHEAR REINFORCEMENT - A RATIONAL (!) APPROACH

1. Before cracking - Cracking load given as before:

Vc = bd 1.9 f ′c + 2500Ãw
Vd
M
 ≤ 3.5 f ′c bd

2. After cracking

Assuming Vc equals to that at cracking - This is conservative due to the effect of

compression and diagonal tension in the remaining uncracked, compression zone of the beam.
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9.11. BEAMS WITH VERTICAL STIRRUPS (OR BEAMS WITH SHEAR REINFORCEMENT)

Forces at diagonal crack in a beam with vertical stirrups can be shown as

VN= total internal shear force = Vcz + Avfv+ Vd + Viy

where Vcz = Internal vertical force in the uncracked portion of concrete

Vd = Force across the longitudinal steel, acting as a dowel

Viy = Aggregate interlock force in vertical direction

ΣAvfv = Vertical force in stirrups.

If horizontal projection of the crack is “p”, and the stirrup spacing is “s”, then the number of stirrups

crossed by a random crack will be:

n = p
s

and total force contributed by stirrups will be:

Vs = nAvfs

which near failure will be

Vs = nAvfy fs = fy

Also, we can conservatively neglect forces due to dowel and aggregate interlock. Therefore

Vn = Vc + Vs = Vc + nAvfy

The only question remaining is that:What is the horizontal projection of the crack? Test shown that

p=d is a good approximation: p/s = d/s or

Vs = nAvfy = d
s Avfy This is Eq. 11–15 of ACI
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9.12. BEAMS WITH INCLINED BARS
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S
1+ 1

tanα


Vs = nAvfy sinα < 3 fc′ bwd Eq. 11--17

Vs = Avfy sinαpS 1+ cosα
sinα
 = Avfy dS

sinα+ cosα Eq. 11--16
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9.13. ACI CODE PROVISIONS FOR SHEAR DESIGN

According to ACI code procedures

Vu ≤ φ Vn (Required strength ≤ Provided strength)

Vu = total shear force applied at a given section due to factored loads. (1.2 wd + 1.6 wL,

etc.)

Vn = nominal shear strength,which is the sumof contributions of the concrete and theweb

steel if present

Vn = Vc + Vs

φ = strength reduction factor (φ=0.75 for shear) - Compare to the strength reduction factor for bend-
ing which is 0.9. The reason for the difference is:

• Sudden nature of failure for shear

• Imperfect understanding of the failure mode

ACI provisions:

Vertical stirrups

Vu ≤ φVc +
φ Av fy d

s

Inclined stirrups

Vu ≤ φVc +
φ Av fy d

s (sinα + cosα)

Sect 11.4.7.2 Eq. 11-15

Sect 11.4.7.2 Eq. 11-16

For design:

Vu = φVc +
φ Av fy d

s

or
s =

Av fy d
Vu

φ
− Vc

s =
φ Av fy d

Vu − φVc
or

similarly one can find s for inclined bars

Note Av is for 2 bars.

For example for #3 U-stirrups

Av = 2 (0.11) = 0.22 in2
1 2

Av = 4 (0.11)

= 0.44 in2
1 2

3
4
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9.14. WHERE DOSE CODE REQUIRE SHEAR REINFORCEMENT?

According to ACI code section 11.5.5, we need to provide shear reinforcement when

Vu ≥
φVc
2

Exception are:

• Slabs and footings

• Concrete joist construction

• Special configuration beam (shallow)

• Special case when test to destruction shows adequate capacity

When Vu ( the factored shear force) is no larger than φVc then theoretically no web reinforcement is

required. Even in such cases, the code requires at least a minimum area of web reinforcement equal

to

Av,min = 0.75 fc′ bwS
fyt

Eq.(11− 13) for 1
2
Vu≤ φVc≤ Vu

smax =
Avfy
50bw

9.15. SHEAR STRENGTH PROVIDED BY CONCRETE

For members subjected to shear and flexure only

Vc= bwd 1.9 f ′c + 2500Ãw
Vud
Mu
 ≤ 3.5 f ′c bwd Eq.11− 5 Sect 11.3.2

the second term in the parenthesis should be

|Vud
Mu

| ≤ 1

where Mu is the factored moment occurring

simultaneously with Vu at section considered.

Alternate form of Eq. 11-6 is the

Eq. 11-3 of the ACI code which is much simpler

Vc = 2 f ′c bwd Eq. 11− 3

This gives more conservative values compared to

Eq. 11-6 resulting in slightly more expensive design.

1.9 fc′

3.5 fc′
Vc = bwd 1.9 f ′c + 2500Ãw

Vud
Mu


Large
M

Small
M← →

1000
ÃVud
M

Vc
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9.16. MAXIMUM STIRRUPS SPACING

if Vs ≤ 4 fc′ bwd the maximum spacing is the smallest of

Smax =
Avfy
50bw

Smax = d∕2

Smax = 24 inches

ACI 11.4.5

Vs > 4 fc′ bwdif the maximum spacing is the smallest of

Smax =
Avfy
50bw

Smax = d∕4

Smax = 12 inches

ACI 114.5

In no case Vs can exceed Vs ≤ 8 fc′ bwd

Eq. 11-13 of ACI

Eq. 11-13 of ACI

ACI 11.4.7.9

Av,min = 0.75 fc′ bwS
fyt

Av,min = 0.75 fc′ bwS
fyt
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9.17. EXAMPLE OF SHEAR REINFORCEMENT

Select the spacing ofU-shaped stirrupsmadeofNo. 3 bars for the beamshownbelowusing bothEqs.

11-3 and 11-5 of ACI 318 code to obtain Vc. Compare the resulting space using two formulas.

h d

2.5”
h = 18.5 inches
d = 16 inches =1.33 ft
b = 11 inches

3-#9 bars

3-#9 bars

b

20 kips

6 k/ft

18 ’

M=150 ft-k M=150 ft-k

Shear Force

64

64

10

10

150

183

150

f’c = 5,000 psi
fy = 60,000 psi

Loads are factored and
moments are given.

x

V(x) = ax + b

V(x)=64 at x=0
V(x)=10 at x =9

therefore
V(x) =-6x +64

M(x) = 0.5(64+64-6x)x - 150
= (64-3x)x -150


