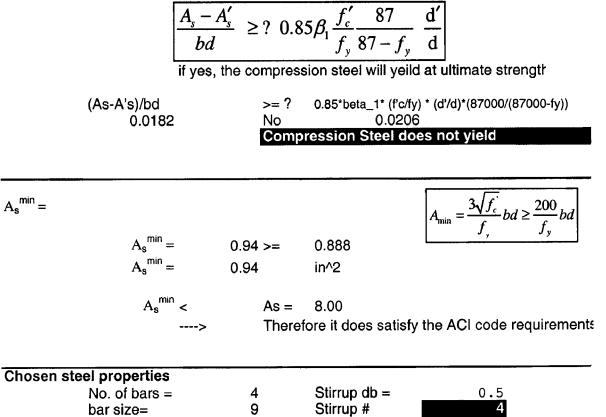

			Comp
d =	22.2	in]
d' =	2.5	in	1
b =	12]
f'c =	5000]
fy =	60000	psi	
fy = W _L =	1.205	k/ft	Tension
W _D =	1.21	k/ft	
1 or 2	1		1 = Simpl
L =	40	ft	Span
Mu =	8112	in.kips]
$\beta_1 =$	0.8]

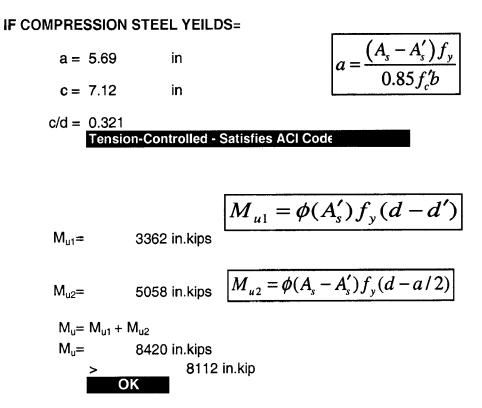
o o o A's

= Simply supported, 2=cantilevered beam ban


Find the compression steel. First check to see if the compression steel will yield at failure

A's = 3.13 in^2
$$M_{u1} = \phi(A'_s) f_y (d - d') \\ A'_s = \frac{M_{u1}}{\phi f_y (d - d')}$$

Find Find Tension Steel



Check final design to see if the compression steel will yield with chosen design Check to see if the compression steel yields at balanced condition

No. of bars =	4	Stirrup db =	0.5
bar size=	9	Stirrup #	4
bar diameter :	1.128 inches		
bar area =	1 in^2	clear spacing=	1.16 inches
width (b) =	<u> </u>		
chosen cover	1.5	bar spacing is	ok

Final moment capacity with the chosen dimensions and reinforcing stee

IF COMPRESSION STEEL DOES NOT YEILD=

$$C_{s} = A'_{s}f'_{s} = A'_{s}\varepsilon'_{s}E_{s} = A'_{s}\left(0.003\frac{c-d}{c}\right)E_{s}$$

$$C_{c} = 0.85f'_{c}\beta_{1}cb$$

$$T_{s} = A_{s}f_{y}$$

$$c = 7.33 \text{ in Equilibrium} = 0 \text{ kips}$$

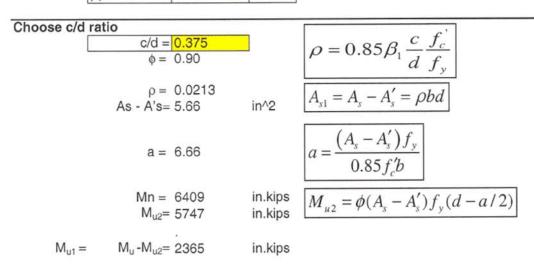
$$Cs = 181 \quad 19.70 \quad 3569$$

$$Cc = 299 \quad 19.27 \quad 5762$$

$$Ts = 480 \quad 0.00 \quad 0$$

$$Mn = 9331 \quad \text{in-kips}$$

$$Mn = 8398 \quad \text{in-kips}$$

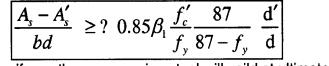

$$Mn = 778 \quad \text{ft-kips}$$

$$Mn = 700 \quad \text{ft-kips}$$

			Comp
d =	22.2	in]
d' =	2.5	in]
b =	12]
f'c =	5000]
fy =	60000	psi	
$W_L =$	1.205	k/ft	Tension
W _D =	1.21	k/ft	1
1 or 2	1		1 = Simpl
L =	40		Span
Mu =	8112	in.kips	
$\beta_1 =$	0.8]

0 0 0 A's

= Simply supported, 2=cantilevered beam pan


Find the compression steel. First check to see if the compression steel will yield at failure

A's = 2.23 in^2
$$M_{u1} = \phi(A'_s) f_y (d - d') \\ A'_s = \frac{M_{u1}}{\phi f_y (d - d')}$$

Find Find Tension Steel

Check final design to see if the compression steel will yield with chosen design Check to see if the compression steel yields at balanced condition

if yes, the compression steel will yeild at ultimate strength

(As-A's)/bd 0.0211 >= ? 0.85*beta_1* (f'c/fy) * (d'/d)*(87000/(87000-fy)) Yes 0.0206 Compression Steel Yields

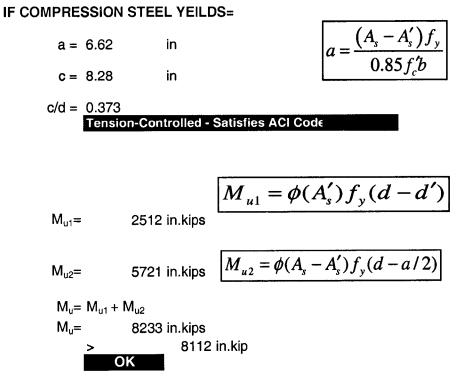
 $A_{\min} = \frac{3\sqrt{f_c'}}{f_y} bd \ge \frac{200}{f_y} bd$

 $A_s^{min} =$

$A_s^{min} =$	0.94 >=	
$A_s^{min} =$	0.94	
A_s^{min} <	As	

---->

As = 8.00


0.888

in^2

Therefore it does satisfy the ACI code requirements

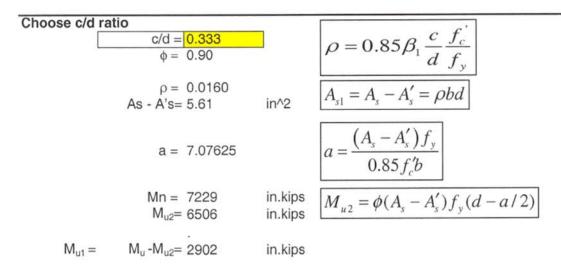
4	Stirrup db =	0.5
9	Stirrup #	4
1.128 inches		
1 in^2	clear spacing=	1.16 inches
12 in		
1.5	bar spacing is	ok
	1 in^2 12 in	9 Stirrup # 1.128 inches 1 in^2 clear spacing= <u>12</u> in

Final moment capacity with the chosen dimensions and reinforcing stee

IF COMPRESSION STEEL DOES NOT YEILD= $C_s = A'_s f'_s = A'_s \varepsilon'_s E_s = A'_s \left(0.003 \frac{c-d}{c} \right)$ E_s $\overline{C_c} = 0.85 f_c' \beta_1 cb$ $T_{s} = A_{s}f_{v}$ Equilibrium = kips C = 7.33 in -45 Moment Force Arm Cs = 136 19.70 2677 Cc = 19.27 5762 299 Ts= 480 0.00 0 in-kips Mn = 8439 Mu = 7567 in-kips 8112 in.kip ngth Requiremen Mn =703 ft-kips 631 ft-kips Mu =

6.9. Example: Design of a member to satisfy a nominal moment capacity.

A doubly reinforced concrete beam section has a maximum effective depth d = 25 in and is subjected to a total factored moment M_u = 9400 in-kips, including self weight. Design the section and select the appropriate reinforcement at the tension and the compression faces to carry the required load.


 $f_y = 60,000 \ psi$ $f_c' = 4,000 \ psi$ Required $M_n = 9,400 \ in-k$

Solution

Assume that b = 14 in. = 0.55 d

See the following pages for design done in a spreadsheet.

			Comp
d =	25	in	o o A's
d' =	2.5	in	
b =	14	in	
f'c =	4000]
fy =	60000	psi	o o o o As
$W_L =$	1.4	k/ft	Tension
$W_D =$	1.4	k/ft	
1 or 2	1		1 = Simply supported, 2=cantilevered beam
L =	40	ft	Span
Mu =	9408	in.kips	
$\beta_1 =$	0.85]

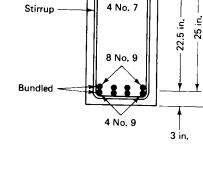
Find the compression steel. First check to see if the compression steel will yield at failure

A's = 2.39 in^2
$$M_{u1} = \phi(A'_s) f_y (d - d')$$
$$A'_s = \frac{M_{u1}}{\phi f_y (d - d')}$$

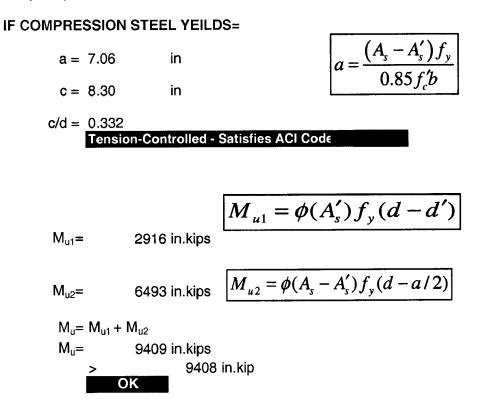
Find Find Tension Steel

Check final design to see if the compression steel will yield with chosen desigr Check to see if the compression steel yields at balanced condition

$$\frac{A_{s} - A_{s}'}{bd} \geq ? \ 0.85\beta_{1} \frac{f_{c}'}{f_{y}} \frac{87}{87 - f_{y}} \frac{d'}{d}$$


if yes, the compression steel will yeild at ultimate strength

(As-A's)/bd 0.0160


0.85*beta_1* (f'c/fy) * (d'/d)*(87000/(87000-fy)) 0.0155 >= ? Yes **Compression Steel Yields**

_____28 in.____

As ^{min} =	$A_s^{min} = A_s^{min} =$	1.11 >= 1.17	1.166666667 in^2	$A_{\min} = \frac{3\sqrt{f_c}}{f_y} bd \ge \frac{200}{f_y} bd$	
	As ^{min} <	As = Therefo	8.00 re it does satisfy th	ne ACI code requirements	
Chosen ste	el properties No. of bars = bar size= bar diameter : bar area = width (b) =	4 9 1.128 inches 1 in^2 14 in	Stirrup db = Stirrup # clear spacing=	0.5 4 1.83 inches	
chosen cover 1.5 bar spacing is ok Support section lower fibers 2.5 in. 2.5 in. 1.4 in. 2.5 in.					

Final moment capacity with the chosen dimensions and reinforcing stee

IF COMPRESSION STEEL DOES NOT YEILD=

$$C_{s} = A'_{s}f'_{s} = A'_{s}e'_{s}E_{s} = A'_{s}\left(0.003\frac{c-d^{2}}{c}\right)E_{s}$$

$$C_{c} = 0.85f'_{c}\beta_{1}cb$$

$$T_{s} = A_{s}f_{y}$$

$$c = 7.33 \text{ in Equilibrium} = -46 \text{ kips}$$

$$Cs = 138 22.50 3096$$

$$Cc = 297 21.88 6490$$

$$Ts = 480 0.00 0$$

$$Mn = 9586 \text{ in-kips}$$

$$Mu = 8627 \text{ in-kips}$$

$$9408 \text{ in.kip}$$

$$gth Requirement$$

$$Mn = 799 \text{ ft-kips}$$

$$Mu = 719 \text{ ft-kips}$$