

Displacement method of analysis: slope-defection method

Analysis of Frames: Sidesway

A frame will sidesway, or be displaced to the side, when it or the loading acting on it is nonsymmetric.

Here the loading P causes unequal moments M_{BC} and M_{CB} at the joints B and C, respectively.

M_{BC} tends to displace joint B to the right, whereas M_{CB} tends to displace joint C to the left.

2

Displacement method of analysis: slope-defection method Analysis of Frames: Sidesway A frame will sidesway, or be displaced to the side, when it or the loading acting on it is nonsymmetric.

3

5

- Since M_{BC} will be larger than M_{CB}, the net result is a sidesway of both joints B and C to the right.
- Due to this deflection, we must therefore consider the column rotation ψ (since ψ = Δ/L) as unknown in the slope-deflection equations.

Displacement method of analysis: slope-defection method

Analysis of Frames: Sidesway

A frame will sidesway, or be displaced to the side, when it or the loading acting on it is nonsymmetric.

As a result, an extra equilibrium equation must be included for the solution.

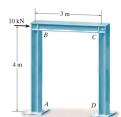
4

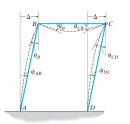
6

▶ Example 10-4: Determine the moments at the joint. The supports A and D are fixed, B is fixed, C is pinned, and El is constant. ▶ We can apply the fixed-end slope-displacement equation for span AB

Displacement method of analysis: slope-defection method

Example 10-4: Determine the moments at the joint. The supports A and D are fixed, B is fixed, C is pinned, and EI is constant.





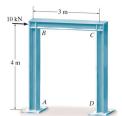
ightharpoonup There is an unknown Δ and $\theta_{\it B}$ at $\it B$. The angular displacement θ_{CB} and θ_{CD} at joint C are not include since we using the **pinned**end slope-displacement equations.

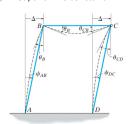
Displacement method of analysis: slope-defection method **Example 10-4**: Determine the moments at the joint. The supports A and D are fixed, B is fixed, C is pinned, and EI is constant. \blacktriangleright Due to the Δ , the cords pf AB and DC rotate clockwise, $\psi = \psi_{AB} = \psi_{DC} = \Delta/4 \text{ m}$

8

Displacement method of analysis: slope-defection method

Example 10-4: Determine the moments at the joint. The supports A and D are fixed, B is fixed, C is pinned, and EI is constant.





 \blacktriangleright The rotations θ_{A} and θ_{D} are zero (fixed ends), and there are no FEM for the members.

9

Displacement method of analysis: slope-defection method

Example 10-4: For span AB, consider A to be near and B to be far.

$$M_N = 2\frac{EI}{L}(2\theta_N + \theta_F - 3\psi) + (FEM)_N$$

$$M_{AB} = 2\frac{EI}{L} \left(2 \oint_{A}^{0} + \theta_{B} - 3\psi \right) + \left(F \underbrace{EM}_{AB}^{0} \right)_{AB}$$

$$M_{AB} = \frac{EI}{2m} [\theta_B - 3\psi]$$

10

Displacement method of analysis: slope-defection method

Example 10-4: For span AB, consider B to be near and A to be far.

$$M_N = 2\frac{EI}{L}(2\theta_N + \theta_F - 3\psi) + (FEM)_N$$

$$M_{BA} = 2\frac{EI}{L}(2\theta_B + \oint_A^0 -3\psi) + (FEM)_{BA}$$

$$M_{BA} = \frac{EI}{2m} [2\theta_B - 3\psi]$$

Displacement method of analysis: slope-defection method

Example 10-4: For span *BC*, consider *B* to be near and *C* to be far.

$$M_{N} = 3\frac{EI}{L}(\theta_{N} - \psi) + (FEM)_{N}$$

$$M_{BC} = 3\frac{EI}{3m}(\theta_{B} - \psi) + (FEM)_{BC}$$

For span DC, consider D to be near and C to be far.

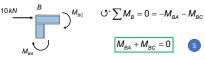
$$M_N = 3\frac{EI}{L}(\theta_N - \psi) + (FEM)_N$$

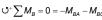
 $M_{N} = 3 \frac{EI}{L} (\theta_{N} - \psi) + (FEM)_{N}$ $M_{DC} = 3 \frac{EI}{4m} (\frac{1}{\theta_{D}} - \psi) + (FEM)_{DC}$ $M_{DC} = 3 \frac{EI}{4m} (-\psi)$

11

Displacement method of analysis: slope-defection method

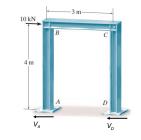
- **Example 10-4**: These four equations contain six unknowns: $\theta_{\rm B}$ M_{AB} , M_{BA} , M_{BC} , M_{DC} , and Δ .
- The necessary additional equations comes from the condition of moment equilibrium at support B and forces for the entire
- The free-body diagram of a segment of the beam at B is:





Displacement method of analysis: slope-defection method

- Example 10-4: Determine the moments at the joint. The supports A and D are fixed, B is fixed, C is pinned, and EI is constant.
- > Summing horizontal forces for the entire frame gives:



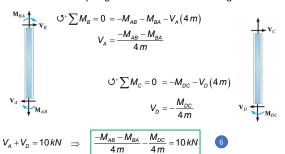
 $\rightarrow^{+} \sum F_{x} = 0 = -V_{A} - V_{D} + 10 \, kN$

 $V_A + V_D = 10 \, kN$

13

Displacement method of analysis: slope-defection method

- **Example 10-4**: Determine the moments at the joint. The supports A and D are fixed, B is fixed, C is pinned, and EI is constant.
- > From the free-body diagram of each column we can get:



14

16

Displacement method of analysis: slope-defection method

- Example 10-4: Determine the moments at the joint. The supports A and D are fixed, B is fixed, C is pinned, and EI is constant.
- > Substituting Equations (2) and (3), into Equation (5):

$$M_{\rm BA} + M_{\rm BC} = 0 \ \Rightarrow \ \frac{EI}{2m} \Big[2\theta_{\rm B} - 3\psi \Big] + \frac{EI}{1m} \Big(\theta_{\rm B} \Big) = 0 \qquad \qquad \theta_{\rm B} = \frac{3}{4} \psi$$

> Substituting Equations (1), (2) and (4), into Equation (6):

$$\frac{-M_{AB} - M_{BA}}{4 \, m} - \frac{M_{DC}}{4 \, m} = 10 \, kN \qquad \qquad \left(-M_{AB} - M_{BA}\right) - M_{DC} = 40 \, kN \, m$$

$$-\frac{EI}{2m} \left[\theta_{\rm B} - 3\psi\right] - \frac{EI}{2m} \left[2\theta_{\rm B} - 3\psi\right] - \frac{3EI}{4m} \left(-\psi\right) = 40 \text{ kN m}$$

$$EI\left[-\frac{3}{2}\theta_{\rm B} + \frac{15}{4}\psi\right] = 40\,\rm kN\,m^2$$

15

Displacement method of analysis: slope-defection method

- > Example 10-4: Determine the moments at the joint. The supports A and D are fixed, B is fixed, C is pinned, and EI is constant.
- Substituting Equation (5a) into Equation (6a):

$$\theta_{B} = \frac{3}{4}\psi$$

$$= \frac{15}{2} \left[-\frac{3}{2}\theta_{B} + \frac{15}{4}\psi \right] = 40 \text{ kN } m^{2}$$

$$-\frac{3}{2} \left(\frac{3}{4}\psi \right) + \frac{15}{4}\psi = \frac{40 \text{ kN } m^{2}}{EI}$$

$$\frac{21}{8}\psi = \frac{40 \text{ kN } m^{2}}{EI}$$

➤ Solving for \(\psi\) gives:

 $320\,kN\,m^2$

 $240 \, kN \, m^2$ 21 FI

Displacement method of analysis: slope-defection method

- > Example 10-4: Determine the moments at the joint. The supports A and D are fixed, B is fixed, C is pinned, and EI is constant.
- > Substituting $\psi = \frac{320 \text{ kN m}^2}{21 \text{EI}}$ $\theta_B = \frac{240 \text{ kN m}^2}{21 \text{EI}}$ into moment

$$M_{AB} = \frac{EI}{2m} \left[\theta_B - 3\psi \right] = \frac{EI}{2m} \left[\frac{240 \, kN \, m^2}{21 EI} - 3 \left(\frac{320 \, kN \, m^2}{21 EI} \right) \right]$$

$$M_{AB} = -17.14 \, kNm$$

$$M_{BA} = \frac{EI}{2m} \left[2\theta_B - 3\psi \right] = \frac{EI}{2m} \left[2 \left(\frac{240 \, kN \, m^2}{21EI} \right) - 3 \left(\frac{320 \, kN \, m^2}{21EI} \right) \right]$$

 $M_{BA} = -11.43 \, kNm$

 $V_A = \frac{-M_{AB} - M_{BA}}{4 m} = \frac{-(-17.14 \text{ kNm}) - (-11.43 \text{kNm})}{4 m}$

 $V_A = 7.14 \, kN$

Displacement method of analysis: slope-defection method

Example 10-4: Determine the moments at the joint. The supports A and D are fixed, B is fixed, C is pinned, and EI is constant.

320 kN m² $240\,kN\,m^2$ ➤ Substituting into moment 21*EI* equations give

$$M_{\rm BC} = EI \left(\theta_{\rm B}\right) = EI \left(\frac{240\,{\rm kN}\,m^2}{21EI}\right) \qquad \qquad \boxed{M_{\rm BC} = 11.43\,{\rm kNm}}$$

$$M_{\rm DC} = \frac{3EI}{4} \left(-\psi \right) = \frac{3EI}{4} \left(-\frac{320 \, kN \, m^2}{21EI} \right)$$
 $M_{\rm DC} = -11.43 \, kNm$

19

 $V_D = -\frac{M_{DC}}{4m} = -\frac{(-11.43 \, kNm)}{4m}$ $V_D = 2.86 \, kN$ 20

Displacement method of analysis: slope-defection method **Example 10-4**: Determine the moments at the joint. The supports A and D are fixed, B is fixed, C is pinned, and EI is constant. $O^+\sum M_A=0$ =-10kN(4m)+11.43kNm $+17.14 \, kNm + D_{\nu}(3 \, m)$ $D_{y} = -3.81kN$ $O^+ \sum M_D = 0$ =-10kN(4m)+11.43kNm $+17.14 \, kNm - A_{\nu}(3 \, m)$ $A_{v} = 3.81kN$

Displacement method of analysis: slope-defection method

Let's work some problems

