Torsion Test Procedure

Mechanics of Materials Lab, CIVL 3325
September, 29, 2011

Strain Gauge

- Electrical sensor (transducer) that measures strains.
- Its electrical resistance changes when an external force stretches or compresses it
- Change in resistance is directly proportional to displacement (strain)
- Small sheet of metal foil cut in zigzag pattern, only a few micron thick
- Normally mounted on a backing sheet
Strain Gauge

- User should:
 - prepare the surface
 - bond the gauge properly
 - use the gauge in the right direction

for normal strains

for shear strain

Measurement is based on: the Wheatstone Bridge

$V_o = V_i \left(\frac{R_3}{R_1 + R_3} - \frac{R_4}{R_2 + R_4} \right)$

if R_1, R_2, R_3, and R_4 are all equal, then $V_o = 0.0$
Strain Gauge

- Quarter Bridge Connection (least accurate)

- Half Bridge Connection I (Opposite Arms)

Identical strain values
With the same sign:
- Both tensile
- Both compression
Strain Gauge

- Half Bridge Connection 2 (Adjacent Arms)

 Identical strain values
 With opposite sign:
 One tensile and
 one compression

Strain Gauge

- Full Bridge Connection (most accurate)

 Apposite arms have
 same sign

 Adjacent arms have
 apposite sign
Strain Gauge

- \(V_i \) : known
- \(V_o \) : measured
- \(N \) : number of active arms (1, 2, or 4)
- \(GF \) : gauge factor (to calibrate)

\[
\varepsilon = 4 \times \frac{V_o}{GF \times V_i \times N}
\]

- Negative strain: compressive
- Positive strain: tensile

Strain Display Device

- Set:
 Configuration number (\(N \)), Gauge Factor;
- And, zero before loading.
Strain Display Device

- Wire plugs, connects the gauges to active arms
- Dummy plugs, for inactive arms

Strain Display Device

- Quarter bridge:
 - Fit inactive arms with dummy plugs
 - Config. = 1
Strain Display Device

• Half bridge:
 • Fit inactive arms with dummy plugs
 • Config. = 2

Strain Display Device

• Full bridge:
 • Config. = 4
Torsion Test Device

- Main frame
- Torsion test specimen (bar) with installed strain gauges
- Loading arm, hanger and weights
- Strain display
Torsion Test Device

The load distance is constant 15 cm

Test Procedure

• Using vernier caliper, measure the diameter of the specimen
• Calculate J (torsional stiffness)
• Using a same weight, find the colors (gauges) with same sign (which two are copressive and which two are tensile)
• Setup the full bridge connection
• Try 100g, 300g, 400g, 500g, and 750g weights, read the strain from strain display and calculate the stress for each one
• Plot the five points and compute the shear modulus, G, using a best-fit straight line
<table>
<thead>
<tr>
<th>Group 4</th>
<th>Group 3</th>
<th>Group 2</th>
<th>Group 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morgan</td>
<td>Beal</td>
<td>Malmi</td>
<td>Cody Baker</td>
</tr>
<tr>
<td>A. Apperson</td>
<td>Bridges</td>
<td>Overton</td>
<td>Clint Baker</td>
</tr>
<tr>
<td>Elzey</td>
<td>McAnally</td>
<td>Thomas</td>
<td>Luttman</td>
</tr>
<tr>
<td>Brasher</td>
<td>Gafferd</td>
<td>Syverson</td>
<td>Owens</td>
</tr>
<tr>
<td>Zenelaku</td>
<td>Mariano</td>
<td>Ford</td>
<td>Parrish</td>
</tr>
<tr>
<td></td>
<td>DePriest</td>
<td>Ellis</td>
<td>W. Apperson</td>
</tr>
</tbody>
</table>