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Mechanics of Materials 
CIVL 3322 / MECH 3322 

Deflection of Beams 

The Elastic Curve 

¢ The deflection of a beam must often 
be limited in order to provide integrity 
and stability of a structure or machine, 
or 

¢ To prevent any attached brittle 
materials from cracking 

Beam Deflection by Integration 2 
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The Elastic Curve 

¢ Deflections at specific points on a 
beam must be determined in order to 
analyze a statically indeterminate 
system. 
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The Elastic Curve 

¢ The curve that is formed by the plotting 
the position of the centroid of the beam 
along the longitudal axis is known as the 
elastic curve. 
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The Elastic Curve 

¢ At different types of supports, information 
that is used in developing the elastic curve 
are provided 
l Supports which resist a force, such as a 

pin, restrict displacement 
l Supports which resist a moment, such as 

a fixed end support, resist displacement 
and rotation or slope 

Beam Deflection by Integration 5 

The Elastic Curve 
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The Elastic Curve 
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The Elastic Curve 
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¢ We can derive an expression for the 
curvature of the elastic curve at any 
point where ρ is the radius of 
curvature of the elastic curve at the 
point in question 

1
ρ
= M
EI
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The Elastic Curve 
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¢  If you make the assumption to deflections 
are very small and that the slope of the 
elastic curve at any point is very small, the 
curvature can be approximated at any point 
by 

d 2v
dx2

= M
EI

v is the deflection of 
the elastic curve 

The Elastic Curve 
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¢ We can rearrange terms 

EI d
2v
dx2

= M
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The Elastic Curve 
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¢ Differentiate both sides with respect to x 

d
dx

EI d
2v
dx2

⎛
⎝⎜

⎞
⎠⎟
= dM
dx

=V (x)

The Elastic Curve 
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¢ And again differentiate both sides with 
respect to x 

d 2

dx2
EI d

2v
dx2

⎛
⎝⎜

⎞
⎠⎟
= dV
dx

= w(x)
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The Elastic Curve 
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¢ So there are 
three paths to 
finding v 

EI d
4v
dx4

= w(x)

EI d
3v
dx3

=V (x)

EI d
2v
dx2

= M (x)

Boundary Conditions 
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Boundary Conditions 
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Boundary Conditions 
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Boundary Conditions 
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Boundary Conditions 
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Boundary Conditions 
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Combining Load Conditions 
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Cantilever Example 
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¢ Given a cantilevered beam with a fixed end 
support at the right end and a load P 
applied at the left end of the beam. 

¢ The beam has a length of L. 

Cantilever Example 
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¢  If we define x as the distance to the right 
from the applied load P, then the moment 
function at any distance x is given as 

M x( ) = −Px
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Cantilever Example 
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¢ Since we have a function for M along the 
beam we can use the expression relating 
the moment and the deflection 

M x( ) = −Px

EI d
2v
dx2

= M (x)

EI d
2v
dx2

= −Px

Cantilever Example 
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¢  Isolating the variables and integrating 

EI d 2v
dx2

⎛
⎝⎜

⎞
⎠⎟
= −Px

EI dv
dx

⎛
⎝⎜

⎞
⎠⎟ = − Px

2

2
+C1
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Cantilever Example 
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¢  Integrating again 

EI dv
dx

⎛
⎝⎜

⎞
⎠⎟ = − Px

2

2
+C1

EIv = − Px
3

6
+C1x +C2

Cantilever Example 
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¢ To be able to define the function for v, we 
need to evaluate C1 and C2 

EI dv
dx

⎛
⎝⎜

⎞
⎠⎟ = − Px

2

2
+C1

EIv = − Px
3

6
+C1x +C2
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Cantilever Example 
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¢ The right end of the beam is supported by a 
fixed end support therefore the slope of the 
deflection curve is 0 and the deflection is 0 

EI dv
dx

⎛
⎝⎜

⎞
⎠⎟ = − Px

2

2
+C1

EIv = − Px
3

6
+C1x +C2

Cantilever Example 
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¢  In terms of boundary conditions this means 

EI dv
dx

⎛
⎝⎜

⎞
⎠⎟ = − Px

2

2
+C1

EIv = − Px
3

6
+C1x +C2

x = L : dv
dx

= 0

x = L :v = 0
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Cantilever Example 
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¢ Evaluating the expressions at the boundary 
conditions 

EI dv
dx

⎛
⎝⎜

⎞
⎠⎟ = − Px

2

2
+C1

EI 0( ) = − PL
2

2
+C1 ⇒C1 =

PL2

2

EIv = − Px
3

6
+ PL

2

2
x +C2

EI 0( ) = − PL
3

6
+ PL

2

2
L +C2 ⇒C2 = − PL

3

3

x = L : dv
dx

= 0

x = L :v = 0

Cantilever Example 
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¢ So the expression for the slope (θ) and the 
deflection (v) are given by 

θ = 1
EI

− Px
2

2
+ PL

2

2
⎛
⎝⎜

⎞
⎠⎟

θ = P
2EI

L2 − x2( )

v = 1
EI

− Px
3

6
+ PL

2

2
x − PL

3

3
⎛
⎝⎜

⎞
⎠⎟

v = P
6EI

−x3 + 3xL2 − 2L3( )

x = L : dv
dx

= 0

x = L :v = 0
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Combining Load Conditions 
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Example 1 
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Example 1 
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Homework 
¢ Show a plot of the shear, bending moment, 

slope, and deflection curves identifying the 
maximum, minimum, and zero points for 
each curve. Use separate plots for each 
function. 

¢ Show the mathematical expression(s) for 
each function. 

¢ Problem P10.4 
¢ Problem P10.8 
¢ Problem P10.11 
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