
1 

Civil Engineering Hydraulics 
 

Conservation of Energy 

Conservation of Energy 2 

Conservation of Energy 
¢ We are going to step over section 3.4 in the text 

for a bit and go on to section 3.5 
¢ We will come back to section 3.4 
¢ Now we will move from the conversation of 

mass to the conservation of energy 
¢  In order to do this, we first need to define the 

terms we will use to describe energy and 
energy input and output 
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Conservation of Energy 
¢ When we add or remove energy from a system, 

we normally do not have the ability to get all the 
energy into or out of the system 

¢ Some things are better than others and getting 
the job done and this is known as the efficiency 
of energy transfer  

¢  it describes how well the machinery can take 
energy out of or provide energy to a flow 
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Conservation of Energy 
¢  In our work with fluid flow, we can  

l add energy to a flow through a pump and  
l extract energy using a turbine 

¢ There may be different names for these 
machines but fundamentally that is what each 
comes down to 
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Conservation of Energy 
¢ We aren’t going to concern ourselves in this 

class with why some of the energy transfers are 
more efficient than others 

¢ We will just accept that they are 
¢  Later we give a numerical value to the 

effeciency 
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Conservation of Energy 
¢ Now we have to look at just how we describe 

the energy of a flow 
¢ This will require a very short trip back to 

Physics and Dynamics 
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Conservation of Energy 
¢ Any mass may be considered to have two types 

of energy 
l Kinetic 
l Potential 
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Conservation of Energy 
¢ Kinetic energy is the energy of motion and is 

defined as the mass times velocity of the mass 
squared divided by 2 

2

2
mV
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Conservation of Energy 
¢ Potential energy is the energy of position and is 

measured relative to some reference height as 

mgh
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Conservation of Energy 
¢ So the energy of a mass is the sum of the 

kinetic and potential energy 

2

2
mVmgh +
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Conservation of Energy 
¢ A fluid mass also has the ability to do work 

(energy) through its pressure component 

2

2
mVmgh +
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Conservation of Energy 
¢ We can develop this by looking at the units of 

energy from the potential or kinetic energy 
expressions 

¢ We will use the potential energy expression to 
look at the unit of energy 

  

mgh = mass× length
time2 × length

mgh = ml2

t2
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Conservation of Energy 
¢ Pressure is force per unit of area 

  

p = F
A
=

mass× length
time2

length2 = m
lt2

mgh = ml2

t2
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Conservation of Energy 
¢  If we multiply the pressure term by the volume 

that the mass occupies we will have units of 
energy 

  

p = F
A
=

mass× length
time2

length2 = m
lt2

pV = m
lt2 l3 = ml2

t2
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Conservation of Energy 
¢ So we can describe the energy of a mass of 

fluid as the sum of the three energy terms 

mgh + mV
2

2
+ pV
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Conservation of Energy 
¢ Now we can divide all the terms through by the 

mass to get an energy per unit of mass 

gh +V
2

2
+ pV
m
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Conservation of Energy 
¢ The ratio of the volume to the mass is the 

specific volume or the inverse of the mass 
density 

gh +V
2

2
+ p
ρ
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Conservation of Energy 
¢ This is the complete description of the energy 

per unit of mass at a point in fluid in reference 
to some elevation 

gh +V
2

2
+ p
ρ
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Conservation of Energy 
¢ The second two terms in the expression are 

properties of the fluid itself and are not related 
to any reference plane 

gh +V
2

2
+ p
ρ
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Conservation of Energy 
¢ The first term is only relative to a reference 

plane and can change if we change that plane 

  
gh+ V 2

2
+ p
ρ
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Conservation of Energy 
¢ The first term is the potential energy 
¢ The second if the kinetic energy 
¢ The third is the flow energy 

  
gh+ V 2

2
+ p
ρ
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Conservation of Energy 
¢ Remember that this is a description of the 

energy per unit mass not the total energy of the 
flow 

  
gh+ V 2

2
+ p
ρ
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Conservation of Energy 
¢  If we look at two points in the same flow, 1 and 

2, we can consider the energy at each of these 
points 

  

gh1 +
V1

2

2
+

p1

ρ

gh2 +
V2

2

2
+

p2

ρ
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Conservation of Energy 
¢  If there is no addition or subtraction of energy 

from the flow 
¢ Energy is conserved between the two points 

  
gh1 +

V1
2

2
+

p1

ρ
= gh2 +

V2
2

2
+

p2

ρ
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Conservation of Energy 
¢  If we have a pump between the two points, we 

add energy to the flow 

1
2

  

gh1 +
V1

2

2
+

p1

ρ

gh2 +
V2

2

2
+

p2

ρ
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Conservation of Energy 
¢ Then the energy expression between the two 

points is 

  
gh1 +

V1
2

2
+

p1

ρ
+ e pump= gh2 +

V2
2

2
+

p2

ρ

1
2
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Conservation of Energy 
¢  If we have a turbine between points 1 and 2, 

energy is removed from the flow and the energy 
expression would become 

  
gh1 +

V1
2

2
+

p1

ρ
− e turbine= gh2 +

V2
2

2
+

p2

ρ

1

2
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Bernoulli’s Equation 
¢ One of the most important expressions in fluid 

mechanics is Bernoulli’s Equation 
¢ While it has general usage, it actually was 

defined for a limited case 
l Regions of steady, incompressible flow 
l Net frictional forces are negligible 
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Bernoulli’s Equation 
¢ When these conditions are violated such as in 

rapidly varying flow conditions or when frictional 
forces are considerable, the assumptions on 
which Bernoulli’s equation are based are no 
longer valid 
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Bernoulli’s Equation 
¢ The form of the expression says that at any 

point in a streamline the sum of the kinetic, 
potential, and pressure energy is a constant. 

  
gh+ V 2

2
+ p
ρ
= constant
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Bernoulli’s Equation 
¢ A streamline is a line which is everywhere 

tangent to the velocity of the flow. 
¢ A pathline is the trajectory that an imaginary 

small point would follow if it followed the flow of 
the fluid in which it was embedded. 

  
gh+ V 2

2
+ p
ρ
= constant
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Bernoulli’s Equation 
¢  If points 1 and 2 are on the same streamline 

and all the other conditions for the Bernoulli 
equation hold true the relationship between the 
energy at the two points is given by 

  
gh1 +

V1
2

2
+

p1

ρ
= gh2 +

V2
2

2
+

p2

ρ
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Bernoulli’s Equation 
¢ Formal expression 
¢ The sum of the kinetic, potential, and flow 

energies of a fluid particle is constant along a 
streamline during steady flow when the 
compressibility and frictional effects are 
negligible 

  
gh+ V 2

2
+ p
ρ
= constant
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Bernoulli’s Equation 
¢  If we multiply the Bernoulli’s equation by the 

mass density of the fluid, we get the equation is 
pressure form 

  

gh+ V 2

2
+ p
ρ
= constant

ρgh+ ρV 2

2
+ p = cρ
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Bernoulli’s Equation 
¢ Each of the terms has a label 

  

ρgh→ hydrostatic pressure

ρV 2

2
→ dynamic pressure

p→ static pressure
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Bernoulli’s Equation 
¢ Usually, the h variable in the hydrostatic 

pressure term is represented by the variable z 
which is the height above some reference 
datum plane 

  

ρgh = ρgz → hydrostatic pressure

ρV 2

2
→ dynamic pressure

p→ static pressure
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Bernoulli’s Equation 
¢ The sum of these three pressure terms is 

known as the total pressure 

  

ρgh = ρgz → hydrostatic pressure

ρV 2

2
→ dynamic pressure

p→ static pressure
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Bernoulli’s Equation 
¢ The sum of the static and dynamic pressures 

are known as the stagnation pressure 

  

ρV 2

2
+ p = pstagnation

ρgh = ρgz → hydrostatic pressure

ρV 2

2
→ dynamic pressure

p→ static pressure
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Bernoulli’s Equation 
¢ The Pitot tube (Henri Pitot a French hydraulic 

engineer) is used for measuring the stagnation 
pressure in a flow 

  

ρV 2

2
+ p = pstagnation

  

ρgh = ρgz → hydrostatic pressure

ρV 2

2
→ dynamic pressure

p→ static pressure
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Bernoulli’s Equation 
¢  If we have a manometer or some other device 

for measuring static pressure, we can 
determine the velocity of the flow from the 
reading on the Pitot tube. 

  

ρV 2

2
+ p = pstagnation

ρgh = ρgz → hydrostatic pressure

ρV 2

2
→ dynamic pressure

p→ static pressure
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Problem 5-43 
¢  5–43 A piezometer and a Pitot tube are tapped into a 3-cm diameter horizontal 

water pipe, and the height of the water columns are measured to be 20 cm in 
the piezometer and 35 cm in the Pitot tube (both measured from the top surface 
of the pipe). Determine the velocity at the center of the pipe. 

ρV 2

2
+ p = pstagnation

ρgh = ρgz → hydrostatic pressure

ρV 2

2
→ dynamic pressure

p→ static pressure
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Problem 5-43 
We know the height of the column of water for both the static pressure P and the Dynamic pressure,
we can convert these heights of water into pressures using the mass density of water and the
graviational constant.

ρwater 1000
kg

m3
:= hpiezometer 20cm:= hpitot 35cm:=

kPa 1000Pa≡

Pstatic ρwater g⋅ hpiezometer⋅:= Pstatic 1.961kPa=

Pstagnation ρwater g⋅ hpitot⋅:= Pstagnation 3.432kPa=

V
2 Pstagnation Pstatic−( )⋅

ρwater
:= V 1.72

m
s

=
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Homework 10-1 

Conservation of Energy 43 Wednesday, September 19, 2012 
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Homework 10-2 
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Homework 10-3 

Assume that the velocity at the top of the 
water is equal to 0 (tank diameter much 
greater than the exit pipe diameter). Solution 
will be in terms of h. 
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