Equations: Quiz 1

Theoretical Braking Distance

\[f_{rb} = 0.01 \left(1 + \frac{V}{147} \right) \]

\[\text{Theoretical Braking Distance} = \frac{\gamma_b (V_f^2 - V_i^2)}{2g(\eta_b \mu + f_{rb} \pm G)} \]

TRANSPORTATION

Stopping Sight Distance

U.S. Customary Units Equation

\[S = \frac{V^2}{30[(a/32.2) \pm G]} + 1.47Vt \]

(PRACTICAL SSD)

Metric Equation:

\[S = \frac{V^2}{254[(a/9.81) \pm G]} + 0.278Vt, \]

where (as appropriate):

- \(S \) = stopping sight distance (ft or m),
- \(G \) = percent grade divided by 100,
- \(V \) = design speed (mph or km/h),
- \(a \) = deceleration rate (ft/s² or m/s²),
 \[= 11.2 \text{ ft/s}^2 = 3.4 \text{ m/s}^2 \] and
- \(t \) = driver reaction time (s).

Sight Distance Related to Curve Length

a. Crest Vertical Curve (general equations):

\[L = \frac{AS^2}{200(\sqrt{h_1} + \sqrt{h_2})^2} \quad \text{for } S \leq L \]

\[L = 2S - \frac{200(\sqrt{h_1} + \sqrt{h_2})^2}{A} \quad \text{for } S > L \]

where

- \(L \) = length of vertical curve (ft or m),
- \(A \) = algebraic difference in grades (%),
- \(S \) = sight distance for stopping or passing, (ft or m),
- \(h_1 \) = height of drivers' eyes above the roadway surface (ft or m), and
- \(h_2 \) = height of object above the roadway surface (ft or m).
U.S. Customary Units:

When \(h_1 = 3.50 \) ft and \(h_2 = 2.0 \) ft,
\[
\begin{align*}
L &= \frac{AS^2}{2158} \\
L &= 25 - \frac{2158}{A}
\end{align*}
\]
for \(S \leq L \)

for \(S > L \)

Metric Units:

When \(h_1 = 1.080 \) mm and \(h_2 = 600 \) mm,
\[
\begin{align*}
L &= \frac{AS^2}{658} \\
L &= 25 - \frac{658}{A}
\end{align*}
\]
for \(S \leq L \)

for \(S > L \)

b. Sag Vertical Curve (based on standard headlight criteria):

U.S. Customary Units
\[
L = \frac{AS^2}{400 + 3.5S} \\
L = 25 - \frac{400 + 3.5A}{A}
\]
for \(S \leq L \)

for \(S > L \)

Metric Units
\[
L = \frac{AS^2}{120 + 3.5S} \\
L = 25 - \frac{120 + 3.5A}{A}
\]
for \(S \leq L \)

for \(S > L \)

c. Sag Vertical Curve (based on adequate sight distance under an overhead structure to see an object beyond a sag vertical curve)
\[
L = \frac{AS^2}{800} \left(C - \frac{h_1 + h_2}{2} \right) \\
L = 25 - \frac{800}{A} \left(C - \frac{h_1 + h_2}{2} \right)
\]
where

where \(C = \) vertical clearance for overhead structure (underpass) located within 200 ft (60 m) of the midpoint of the curve (ft or m).

d. Sag Vertical Curve (based on riding comfort):

U.S. Customary Units
\[
L = \frac{AV^2}{46.5} \\
L = \frac{AV^2}{395}
\]

where (as appropriate):

- \(L = \) length of vertical curve (ft or m),
- \(V = \) design speed (mph or km/hr), and
- \(A = \) algebraic difference in grades (%)

e. Horizontal curve (to see around obstruction):
\[
M = R \left[1 - \cos \left(\frac{28.65S}{R} \right) \right]
\]
where

- \(R = \) radius (ft or m)
- \(M = \) middle ordinate (ft or m),
- \(S = \) stopping sight distance (ft or m).

Superelevation of Horizontal Curves

a. Highways:

U.S. Customary Units:
\[
\frac{e}{100} + f = \frac{V^2}{15R}
\]

Metric Units:
\[
\frac{e}{100} + f = \frac{V^1}{127R}
\]

where (as appropriate):

- \(e = \) superelevation (%),
- \(f = \) side-friction factor,
- \(V = \) vehicle speed (mph or km/hr), and
- \(R = \) radius of curve (ft or m).

b. Railroads:
\[
E = \frac{Gv^2}{gR}
\]

where

- \(E = \) equilibrium elevation of outer rail (in.),
- \(G = \) effective gage (center-to-center of rails) (in.),
- \(v = \) train speed (ft/s),
- \(g = \) acceleration of gravity (ft/s²), and
- \(R = \) radius of curve (ft).

Table 2.4 Typical Values of Coefficients of Road Adhesion

<table>
<thead>
<tr>
<th>Pavement</th>
<th>Maximum</th>
<th>Slide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good, dry</td>
<td>1.00*</td>
<td>0.80</td>
</tr>
<tr>
<td>Good, wet</td>
<td>0.90</td>
<td>0.60</td>
</tr>
<tr>
<td>Poor, dry</td>
<td>0.80</td>
<td>0.55</td>
</tr>
<tr>
<td>Poor, wet</td>
<td>0.60</td>
<td>0.30</td>
</tr>
<tr>
<td>Packed snow or ice</td>
<td>0.25</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Vertical Curve Offsets

\[Y = \frac{A}{200L} x^2 \]

\[A = |G_1 - G_2| \quad \text{*A is in percent form.} \]

\[K = \frac{L}{A} \]

\[x_{hl} = K \times |G_i| \]

Parabolic Equations

\[y = ax^2 + bx + c \]

Where \(y \) = roadway elevation at distance \(x \) from the PVC.

\[a = \frac{G_2 - G_1}{2L}; \quad b = G_1; \quad c = \text{ELEV}_{PVC} \]

*keep in mind that you must use either station/% or ft/decimal for \(x/G_i \).
<table>
<thead>
<tr>
<th>Design speed (mi/h)</th>
<th>Stopping sight distance (ft)</th>
<th>Rate of vertical curvature, $K^$<sup></sup></th>
<th>Design speed (km/h)</th>
<th>Stopping sight distance (m)</th>
<th>Rate of vertical curvature, $K^$<sup></sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Calculated</td>
<td>Design</td>
<td></td>
<td>Calculated</td>
</tr>
<tr>
<td>15</td>
<td>80</td>
<td>3.0</td>
<td>3</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>115</td>
<td>6.1</td>
<td>7</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>155</td>
<td>11.1</td>
<td>12</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>30</td>
<td>200</td>
<td>18.5</td>
<td>19</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>35</td>
<td>250</td>
<td>29.0</td>
<td>29</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>40</td>
<td>305</td>
<td>43.1</td>
<td>44</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td>45</td>
<td>360</td>
<td>60.1</td>
<td>61</td>
<td>80</td>
<td>105</td>
</tr>
<tr>
<td>50</td>
<td>425</td>
<td>83.7</td>
<td>84</td>
<td>90</td>
<td>130</td>
</tr>
<tr>
<td>55</td>
<td>495</td>
<td>113.5</td>
<td>114</td>
<td>100</td>
<td>160</td>
</tr>
<tr>
<td>60</td>
<td>570</td>
<td>150.6</td>
<td>151</td>
<td>110</td>
<td>185</td>
</tr>
<tr>
<td>65</td>
<td>645</td>
<td>192.8</td>
<td>193</td>
<td>120</td>
<td>220</td>
</tr>
<tr>
<td>70</td>
<td>730</td>
<td>246.9</td>
<td>247</td>
<td>130</td>
<td>250</td>
</tr>
<tr>
<td>75</td>
<td>820</td>
<td>311.6</td>
<td>312</td>
<td>140</td>
<td>285</td>
</tr>
<tr>
<td>80</td>
<td>910</td>
<td>383.7</td>
<td>384</td>
<td>150</td>
<td>320</td>
</tr>
</tbody>
</table>

*Rate of vertical curvature, K, is the length of curve per percent algebraic difference in intersecting grades (A): $K = L/A$.

<table>
<thead>
<tr>
<th>Design speed (mi/h)</th>
<th>Stopping sight distance (ft)</th>
<th>Rate of vertical curvature, $K^$<sup></sup></th>
<th>Design speed (km/h)</th>
<th>Stopping sight distance (m)</th>
<th>Rate of vertical curvature, $K^$<sup></sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Calculated</td>
<td>Design</td>
<td></td>
<td>Calculated</td>
</tr>
<tr>
<td>15</td>
<td>80</td>
<td>9.4</td>
<td>10</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>115</td>
<td>16.5</td>
<td>17</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>25</td>
<td>155</td>
<td>25.5</td>
<td>26</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>30</td>
<td>200</td>
<td>36.4</td>
<td>37</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>35</td>
<td>250</td>
<td>49.0</td>
<td>49</td>
<td>60</td>
<td>85</td>
</tr>
<tr>
<td>40</td>
<td>305</td>
<td>63.4</td>
<td>64</td>
<td>70</td>
<td>105</td>
</tr>
<tr>
<td>45</td>
<td>360</td>
<td>78.1</td>
<td>79</td>
<td>80</td>
<td>130</td>
</tr>
<tr>
<td>50</td>
<td>425</td>
<td>95.7</td>
<td>96</td>
<td>90</td>
<td>160</td>
</tr>
<tr>
<td>55</td>
<td>495</td>
<td>114.9</td>
<td>115</td>
<td>100</td>
<td>185</td>
</tr>
<tr>
<td>60</td>
<td>570</td>
<td>135.7</td>
<td>136</td>
<td>110</td>
<td>220</td>
</tr>
<tr>
<td>65</td>
<td>645</td>
<td>156.5</td>
<td>157</td>
<td>120</td>
<td>250</td>
</tr>
<tr>
<td>70</td>
<td>730</td>
<td>180.3</td>
<td>181</td>
<td>130</td>
<td>285</td>
</tr>
<tr>
<td>75</td>
<td>820</td>
<td>205.6</td>
<td>206</td>
<td>140</td>
<td>320</td>
</tr>
<tr>
<td>80</td>
<td>910</td>
<td>231.0</td>
<td>231</td>
<td>150</td>
<td>360</td>
</tr>
</tbody>
</table>

*Rate of vertical curvature, K, is the length of curve per percent algebraic difference in intersecting grades (A): $K = L/A$.

Selection of ITE Rates/Equations, or Collection of Local Data

1. Compatible with ITE Land Use Code?
 - Yes
 - No

2. Size within Data Extremes?
 - Yes
 - No

3. Number of Data Points?
 - 1 or 2
 - 3-5
 - 6 +

4. Regression Equation?
 - A
 - No
 - Yes

If number of data points between 3 and 5, analysts are encouraged to collect local data, but can proceed to Step 4.

Selection of ITE Rates/Equations, or Collection of Local Data (cont.)

5. Standard Deviation 10 percent?
 - Yes
 - No

6. Data Cluster Okay?
 - Yes
 - No

Use Weighted Average Rate

Selection of ITE Rates/Equations, or Collection of Local Data (cont.)

7. 20 or More Data Points?

Yes

Use Regression Equation

No

8A. $R^2 \geq 0.75$? And Within Cluster?

8B. Std Dev $\geq 110\%$? And Within Cluster?

If 8A is yes & 8B is yes

Choose Line at Cluster

If 8A is yes & 8B is no

Use Regression Equation

If 8A is no & 8B is yes

Use Weighted Average Rate

If 8A is no & 8B is no

Collect Local Data

Figure 3.1

Selection of ITE Rates/Equations, or Collection of Local Data (cont.)