Uninterrupted Flow

Reading Assignment: Chapter 5 (sections 5.1-5.3)

We are going to be discussing models of traffic flow and queuing for uninterrupted flow.

2 classifications of flow:

Interrupted:

Uninterrupted:

Definitions:

Flow (Q) –

Volume (V) -

Capacity (Q_{cap}) -

Time mean speed -

$$\overline{u_t} = \frac{\sum_{i=1}^n u_i}{n}$$

u = spot speed (arithmetic mean)

T .	
HV	
$L\Lambda$.	

Veh	Speed (mph)
1	30
2	40
3	50
4	60

Space mean speed –

$$\overline{u_s} = \frac{l}{\overline{t}}$$
$$\overline{t} = \frac{1}{n} \sum_{i=1}^n t_i$$

Ex. (Same as previous, with fixed 1 mile distance).

Veh	Speed (mph)	Travel Time
1	30	0.033333
2	40	0.025000
3	50	0.020000
4	60	0.016667

For traffic models, we will use space mean speed!

Free speed (U_f) -

Headway (h) -

Space headway (s) –

density (K) -

If there are *P* vehicles in a section of roadway with length *I* miles, then

$$K = \frac{P}{l}$$
 veh/mi

jam density (K_j) -

Basic Relationships:

1.
$$Q = \frac{3600}{\bar{h}}$$

2. Q = KU *** Basic equation of traff ic f le

****Make sure UNITS on Q and K match!!! (vph or vph/lane)

Example: (5.4 in textbook)

Assume you are observing traffic in a single lane of a highway at a specific location. You measure the average headway and average spacing of passing vehicles as 3 seconds and 150 ft, respectively. Calculate the flow, average speed, and density of the traffic stream in this lane.

Example: (5.2 in textbook)

A section of highway has a speed-flow relationship of the form $q = au^2 + bu$. It is known that at capacity (which is 2900 veh/h) the space-mean speed of traffic is 30 mph. Determine the speed when the flow is 1400 veh/h and the free-flow speed.

Basic Traffic Flow Models:

Macroscopic -

Microscopic -

We will be discussing the most common macroscopic model (Greenshields).

LINEAR SPEED-DENSITY MODEL

Greenshields hypothesized that a linear relationship exists between speed and density, implying flow/density and flow/speed relationships are parabolic. Greenshields model is useful for either light or dense traffic.

Greenshields assumed that the relationship between U and K actually was linear, and created a mathematical (linear regression model: $y = a + bx \rightarrow U = U_f - \left(\frac{U_f}{K_j}\right)K$) model to that effect. The graphical representation of this model is shown below.

The endpoints of this curve are determined by U_f and K_j .

$$U = U_f \left(1 - \frac{K}{K_j} \right)$$

This is the basic equation of the linear model.

We can get another useful relationship out of this if we multiply both sides of the equation by K.

$$KU = U_f \left(K - \frac{K^2}{K_j} \right)$$

Since Q = KU:

$$Q = U_f \left(K - \frac{K^2}{K_j} \right)$$

Divide the last equation by U_{f} .

$$\frac{Q}{U_f} = K - \frac{K^2}{K_j}$$

Multiply both sides of this by K_{j} .

$$\frac{QK_j}{U_f} = (K_j)K - K^2$$

$$K^2 - (K_j)K + \frac{QK_j}{U_f} = 0$$

$$\boxed{K_j \pm \sqrt{K_j^2 - \frac{4QK_j}{U_f}}}_{K = \frac{2}{2}}$$
FLOW-DENSITY MODEL

Variation of Flow Rate With Density

Note that there is an upper limit on flow rate. We designate this as Q_{cap} . This maximum flow rate is actually <u>capacity</u>. If we define K_{cap} as the density corresponding to the maximum flow rate, Q_{cap} , then

$$K_{cap} = \frac{K_j}{2}$$

for the linear model (*only*!) because of symmetry.

SPEED-FLOW MODEL

Just as we developed a quadratic equation for writing density as a function of Q, we can also develop one for space mean speed as a function of Q. It is as follows:

$$U = \frac{U_f \pm \sqrt{U_f^2 - \frac{4QU_f}{K_j}}}{2}$$

This, too, will be parabolic when plotted.

Variation of Speed With Flow Rate

We note the existence of Q_{cap} on this plot also. Defining U_{cap} to be the space mean speed *at* which capacity occurs, we see that

$$U_{cap} = \frac{U_f}{2}$$

because of symmetry.

Making use of the expressions for K_{cap} and U_{cap} , we can use the Q = KU relationship to get a simple equation for capacity, Q_{cap} .

$$Q_{cap} = K_{cap} U_{cap} = \left(\frac{K_j}{2}\right) \left(\frac{U_f}{2}\right)$$

This can be shortened to:

$$Q_{cap} = \frac{U_f K_j}{4}$$

Keep in mind that with the exception of Q = KU, all of these equations are good for the <u>linear speed-density model only!</u>

Example:

Given the data set of speeds and densities attached, determine the linear regression model for the data set. Determine values of U_f , K_j , Q_{cap} , U_{cap} , K_{cap} . How well does this model fit the data?

Linear	Respession Model	: y=atbx
a.) Greenshields Model		
Speed, U Dens (mph) (vpm yi xi 53.2 48.1 44.8 40.1 37.3 35.2 34.1 27.2 20.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n 14 sum yi 404.8 sum xi 892 sum xiyi 20619.8 sum xi^2 66628 y 28.91429 x 63.71429
$ \begin{array}{c} 17.5 \\ 14.6 \\ 13.1 \\ 11.2 \\ 8 \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$b = \sum_{i=1}^{n} x_i y_i - \frac{1}{n}$	$\left(\begin{array}{c} 2\\ z\\ z\\ z\\ z\end{array}\right)\left(\begin{array}{c} 2\\ z\\ z\\ z\\ z\end{array}\right)$	
$\sum_{i=1}^{\infty} X_i^2 -$	$\frac{1}{2} \left(\sum_{i=1}^{2} x_{i} \right)^{2}$	
$R^{2} = \frac{\sum_{i=1}^{2} (y_{i} - \bar{y})^{2}}{\sum_{i=1}^{2} (y_{i} - \bar{y})^{2}}$	2 (Coefficient of deter suitability function.	mination - measure of of an estimated regression
n= # observation. I: = value of y con y: = value of ith	s youted from regressi observation of y.	on equation

Recap of Greenshields Formuals:

$$U = U_f \left(1 - \frac{K}{K_j} \right)$$

*Remember- these equations are valid for linear speed-density model only!!!

Q = KU ***always true- basic equation of traffic flow.

*The only time you use the (+) sign on density (and thus (-) on space mean speed) is when DEMAND EXCEEDS CAPACITY AND THE LOCATION IS IMMEDIATELY UPSTREAM OF A BOTTLENECK. The majority of the time we will use (-) for density and therefore (+) for space mean speed.

SAMPLE Q-K-U PROBLEMS

During the AM peak period when total demand is 5100 vehicles per hour, Dr. Lipinski's pickup truck stalls in the right lane of eastbound I-240, a six-lane freeway. Assuming a linear speed-density model with $U_f = 60$ mph and $K_j = 120$ veh/lane-mi, find the following:

- i. Speed and density downstream of the blockage.
- ii. Speed, flowrate, and density immediately upstream of the blockage.

Suppose it takes 30 minutes to get Dr. Lipinski's pickup moving again.

- iii. Estimate the maximum queue length and the number of vehicles in it at that time.
- iv. How long does it take for the queue to dissipate?

1_N

Given: $U_f = 60 \text{ mph}$

 $K_j = 120$ veh/mi-lane

Total eastbound demand = 1200 vph (off peak), then:

= 2500 vph (for 30 min. in peak), then:

= 1200 after peak

a. Is this model realistic?

b. What are the speeds upstream, at, and downstream of the lane reduction in the offpeak?

c. What are the speeds a "long way" upstream, immediately upstream, at, and downstream of the lane reduction <u>during</u> the peak?

d. If there is a queue at the end of the peak, how long is it?

e. If there is a queue at the end of the peak, how long does it take for it to dissolve?

f. How many vehicles experienced queueing?

1_N