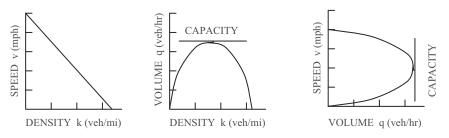
For additional fluids information, see the FLUID MECHANICS section.

TRANSPORTATION

- U.S. Customary Units
- $a = \text{deceleration rate (ft/sec}^2)$
- A = absolute value of algebraic difference in grades (%)
- e =superelevation (%)
- f = side friction factor
- $\pm G =$ percent grade divided by 100 (uphill grade "+")
- h_1 = height of driver's eyes above the roadway surface (ft)
- h_2 = height of object above the roadway surface (ft)
- L =length of curve (ft)
- $L_{\rm s}$ = spiral transition length (ft)
- R = radius of curve (ft)
- S = stopping sight distance (ft)
- t =driver reaction time (sec)
- V =design speed (mph)
- v = vehicle approach speed (fps)
- W = width of intersection, curb-to-curb (ft)
- l =length of vehicle (ft)
- y =length of yellow interval to nearest 0.1 sec (sec)
- r = length of red clearance interval to nearest 0.1 sec (sec)

Vehicle Signal Change Interval


$$y = t + \frac{v}{2a \pm 64.4 G}$$
$$r = \frac{W+l}{v}$$

Stopping Sight Distance

$$S = 1.47Vt + \frac{V^2}{30\left(\left(\frac{a}{32.2}\right) \pm G\right)}$$

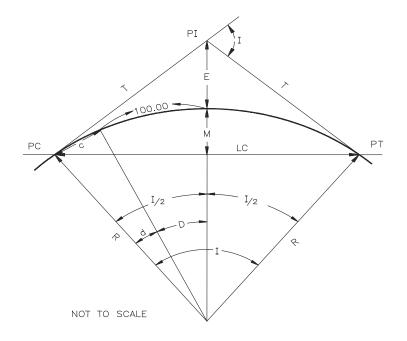
Transportation Models See **INDUSTRIAL ENGINEERING** for optimization models and methods, including queueing theory.

Traffic Flow Relationships (q = kv)

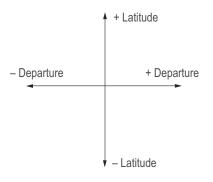
Vertical Curves: Sight Distance Related to Curve Length						
	$S \leq L$	S > L				
Crest Vertical Curve General equation:	$L = \frac{AS^2}{100(\sqrt{2h_1} + \sqrt{2h_2})^2}$	$L = 2S - \frac{200\left(\sqrt{h_{1}} + \sqrt{h_{2}}\right)^{2}}{A}$				
Standard Criteria: $h_1 = 3.50$ ft and $h_2 = 2.0$ ft:	$L = \frac{AS^2}{2,158}$	$L = 2S - \frac{2,158}{A}$				
Sag Vertical Curve (based on standard headlight criteria)	$L = \frac{AS^2}{400 + 3.5S}$	$L = 2S - \left(\frac{400 + 3.5S}{A}\right)$				
Sag Vertical Curve (based on riding comfort)	L =	$\frac{AV^2}{46.5}$				
Sag Vertical Curve (based on adequate sight distance under an overhead structure to see an object beyond a sag vertical curve)	$L = \frac{AS^2}{800\left(C - \frac{h_1 + h_2}{2}\right)}$	$L = 2S - \frac{800}{A} \left(C - \frac{h_1 + h_2}{2} \right)$				
	C = vertical clearance for overhead structure (overpass) located w feet of the midpoint of the curve					

Horizontal Curves	
Side friction factor (based on superelevation)	$0.01e + f = \frac{V^2}{15R}$
Spiral Transition Length	$L_s = \frac{3.15V^3}{RC}$
	C = rate of increase of lateral acceleration [use 1 ft/sec ³ unless otherwise stated]
Sight Distance (to see around obstruction)	$HSO = R \left[1 - \cos\left(\frac{28.65S}{R}\right) \right]$
	HSO = Horizontal sight line offset

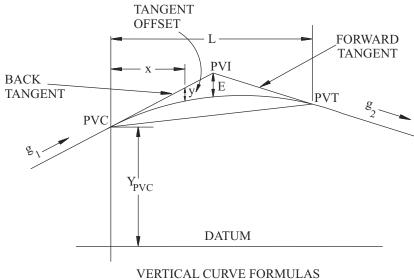
Horizontal Curve Formulas


- D = Degree of Curve, Arc Definition
- PC = Point of Curve (also called BC)
- PT = Point of Tangent (also called EC)
- *PI* = Point of Intersection
- I = Intersection Angle (also called Δ) Angle Between Two Tangents
- L = Length of Curve, from *PC* to *PT*
- T = Tangent Distance
- E = External Distance
- R =Radius
- LC = Length of Long Chord
- M = Length of Middle Ordinate
- c = Length of Sub-Chord
- d = Angle of Sub-Chord
- l = Curve Length for Sub-Chord

$$R = \frac{5729.58}{D}$$


$$R = \frac{LC}{2\sin(I/2)}$$

$$T = R \tan(I/2) = \frac{LC}{2\cos(I/2)}$$
$$L = RI \frac{\pi}{180} = \frac{I}{D} 100$$
$$M = R \left[1 - \cos(I/2) \right]$$
$$\frac{R}{E+R} = \cos(I/2)$$
$$\frac{R-M}{R} = \cos(I/2)$$
$$c = 2R\sin(d/2)$$
$$l = Rd \left(\frac{\pi}{180}\right)$$
$$E = R \left[\frac{1}{\cos(I/2)} - 1 \right]$$


Deflection angle per 100 feet of arc length equals D/2

LATITUDES AND DEPARTURES

Vertical Curve Formulas

NOT TO SCALE

- L = Length of Curve (horizontal)
- *PVC* = Point of Vertical Curvature
- PVI = Point of Vertical Intersection
- PVT = Point of Vertical Tangency
- g_1 = Grade of Back Tangent
- x = Horizontal Distance from PVCto Point on Curve

- g_2 = Grade of Forward Tangent
- a = Parabola Constant
- y = Tangent Offset
- E = Tangent Offset at PVI
- r = Rate of Change of Grade

 x_m = Horizontal Distance to Min/Max Elevation on Curve = $-\frac{g_1}{2a} = \frac{g_1L}{g_1 - g_2}$ Tangent Elevation = $Y_{PVC} + g_1x$ and = $Y_{PVI} + g_2(x - L/2)$

Curve Elevation = $Y_{PVC} + g_1 x + ax^2 = Y_{PVC} + g_1 x + [(g_2 - g_1)/(2L)]x^2$

$$y = ax^{2}$$
 $a = \frac{g_{2} - g_{1}}{2L}$ $E = a\left(\frac{L}{2}\right)^{2}$ $r = \frac{g_{2} - g_{1}}{L}$

EARTHWORK FORMULAS

Average End Area Formula, $V = L(A_1 + A_2)/2$

Prismoidal Formula, $V = L (A_1 + 4A_m + A_2)/6$,

where A_m = area of mid-section, and

L = distance between A_1 and A_2

Pyramid or Cone, V = h (Area of Base)/3

AREA FORMULAS

Area by Coordinates: Area = $[X_A(Y_B - Y_N) + X_B(Y_C - Y_A) + X_C(Y_D - Y_B) + ... + X_N(Y_A - Y_{N-1})] / 2$

Trapezoidal Rule: Area = $w \left(\frac{h_1 + h_n}{2} + h_2 + h_3 + h_4 + \dots + h_{n-1} \right)$

Simpson's 1/3 Rule: Area = $w \left| h_1 + 2 \left(\sum_{k=3,5...}^{n-2} h_k \right) + 4 \left(\sum_{k=2,4...}^{n-1} h_k \right) + h_n \right| / 3$

w = common interval

n must be odd number of measurements

w =common interval

U.S. Customary					Metric				
Brake Design reaction	reaction	Braking distance	Stopping sight distance		Design	Brake reaction	Braking distance	Stopping sight distance	
speed (mi/h)	distance (ft)	on level (ft)	Calculated (ft)	Design (ft)	speed (km/h)	distance (m)	on level (m)	Calculated (m)	Desigr (m)
15	55.1	21.6	76.7	80	20	13.9	4.6	18.5	20
20	73.5	38.4	111.9	115	30	20.9	10.3	31.2	35
25	91.9	60.0	151.9	155	40	27.8	18.4	46.2	50
30	110.3	86.4	196.7	200	50	34.8	28.7	63.5	65
35	128.6	117.6	246.2	250	60	41.7	41.3	83.0	85
40	147.0	153.6	300.6	305	70	48.7	56.2	104.9	105
45	165.4	194.4	359.8	360	80	55.6	73.4	129.0	130
50	183.8	240.0	423.8	425	90	62.6	92.9	155.5	160
55	202.1	290.3	492.4	495	100	69.5	114.7	184.2	185
60	220.5	345.5	566.0	570	110	76.5	138.8	215.3	220
65	238.9	405.5	644.4	645	120	83.4	165.2	248.6	250
70	257.3	470.3	727.6	730	130	90.4	193.8	284.2	285
75	275.6	539.9	815.5	820			22.510	201.2	205
80	294.0	614.3	908.3	910					

 Table 3.1
 Stopping Sight Distance

Note: Brake reaction distance is based on a time of 2.5 s; a deceleration rate of $11.2 \text{ ft/s}^2 (3.4 \text{ m/s}^2)$ is used to determine calculated stopping sight distance.

Source: American Association of State Highway and Transportation Officials, A Policy on Geometric Design of Highways and Streets, Washington, DC, 2001.

	U.S. Cust	omary		Metric			
Design Stopping speed distant (mi/h) (ft)	Stopping sight	Rate of vertical curvature, K [*]		Design	Stopping sight	Rate of vertical curvature, K^*	
		Calculated	Design	speed (km/h)	distance (m)	Calculated	Design
15	80	3.0	3	20	20	0.6	1
20	115	6.1	7	30	35	1.9	2
25	155	11.1	12	40	50	3.8	4
30	200	18.5	19	50	65	6.4	7
35	250	29.0	29	60	85	11.0	11
40	305	43.1	44	70	105	16.8	17
45	360	60.1	61	80	130	25.7	26
50	425	83.7	84	90	160	38.9	20 39
55	495	113.5	114	100	185	52.0	52
60	570	150.6	151	110	220	73.6	74
65	645	192.8	193	120	250	95.0	95
70	730	246.9	247	130	285	123.4	124
75	820	311.6	312	200	200	123.7	124
80	910	383.7	384				

 Table 3.2
 Design Controls for Crest Vertical Curves Based on Stopping Sight Distance

*Rate of vertical curvature, K, is the length of curve per percent algebraic difference in intersecting grades (A): K = L/A.

Source: American Association of State Highway and Transportation Officials, A Policy on Geometric Design of Highways and Streets, Washington, DC, 2001.

	U.S. Cust	omary		Metric			
Design Stopping sight speed distance (mi/h) (ft)		Rate of v curvatur	e, K [*] Design		Stopping sight	Rate of vertical curvature, K [*]	
	Calculated	Design	speed (km/h)	distance (m)	Calculated	Design	
15	80	9.4	10	20	20	2.1	3
20	115	16.5	17	30	35	5.1	6
25	155	25.5	26	40	50	8.5	9
30	200	36.4	37	50	65	12.2	13
35	250	49.0	49	60	85	17.3	18
40	305	63.4	64	70	105	22.6	23
45	360	78.1	79	80	130	29.4	30
50	425	95.7	96	90	160	37.6	38
55	495	114.9	115	100	185	44.6	45
60	570	135.7	136	110	220	54.4	55
65	645	156.5	157	120	250	62.8	63
70	730	180.3	181	130	285	72.7	73
75	820	205.6	206				
80	910	231.0	231				

lable 3.3 Design Controls for Sag Vertical Curves Based on Stopping Sight Distance

*Rate of vertical curvature, K, is the length of curve per percent algebraic difference in intersecting grades (A): K = L/A.

Source: American Association of State Highway and Transportation Officials, A Policy on Geometric Design of Highways and Streets, Washington, DC, 2001.

De sign Speed (mph)	Maximum e (%)	Limiting Values of f	Total (e/100 + f)	Calculated Radius (ft)	Rounded Radius (ft)
20	4.0	0.170	0.210	127.4	125
25	4.0	0.165	0.205	203.9	205
30	4.0	0.160	0.200	301.0	300
35	4.0	0.155	0.195	420.2	420
40	4.0	0.150	0.190	563.3	565
45	4.0	0.145	0.185	732.2	730
50	4.0	0.140	0.180	929.0	930
55	4.0	0.130	0.170	1,190.2	1,190
60	4.0	0.120	0.160	1,505.0	1,505
30	6.0	0.160	0.220	273.6	275
35	6.0	0.155	0.215	381.1	380
40	6.0	0.150	0.210	509.6	510
45	6.0	0.145	0.205	660.7	660
50	6.0	0.140	0.200	836.1	835
55	6.0	0.130	0.190	1,065.0	1,065
60	6.0	0.120	0.180	1,337.8	1,340
65	6.0	0.110	0.170	1,662.4	1,660
70	6.0	0.100	0.160	2,048.5	2,050
75	6.0	0.090	0.150	2,508.4	2,510
80	6.0	0.080	0.140	3,057.8	3,060
30	8.0	0.160	0.240	250.8	250
35	8.0	0.155	0.235	348.7	350
40	8.0	0.150	0.230	465.3	465
45	8.0	0.145	0.225	502.0	500
50	8.0	0.140	0.220	760.1	760
55	8.0	0.130	0.210	963.5	965
60	8.0	0.120	0.200	1,204.0	1,205
65	8.0	0.110	0.190	1,487.4	1,485
70	8.0	0.100	0.180	1,820.9	1,820
75	8.0	0.090	0.170	2,213.3	2,215
80	8.0	0.080	0.160	2,675.6	2,675
30	10.0	0.160	0.260	231.5	230
35	10.0	0.155	0.255	321.3	320
40	10.0	0.150	0.250	428.1	430
45	10.0	0.145	0.245	552.9	555
50	10.0	0.140	0.240	696.8	695
55	10.0	0.130	0.230	879.7	880
60	10.0	0.120	0.220	1,094.6	1,095
65	10.0	0.110	0.210	1,345.8	1,345
70	10.0	0.100	0.200	1,838.8	1,840
75	10.0	0.090	0.190	1,980.3	1,980
80	10.0	0.080	0.180	2,378.3	2,380

ABLE 7-4 Minimum Radius for Limiting Values of *e* and *f*, Rural Highways and High-Speed Irban Streets

nurce: From A Policy on Geometric Design of Highways and Streets 2001, copyright 2001. American Association of State Highway and ransportation Officials, Washington, DC. Used by permission.

QKU:
Linear Speed - Density Model

$$U = U_{f} \left(I - \frac{K}{K_{j}} \right)$$

$$Q = U_{f} \left(K - \frac{K^{2}}{K_{j}} \right)$$

$$K = \frac{K_{j} \pm \sqrt{K_{j}^{2} - \frac{4QK_{j}}{U_{f}}}}{2}$$

$$U = \frac{U_{f} \pm \sqrt{U_{f}^{2} - \frac{4QU_{f}}{K_{j}}}}{2}$$

$$Q cap = U_{f} K_{j}$$

$$U cap = \frac{U_{f}}{Z}$$

$$K cap = \frac{K_{j}}{Z}$$

•

.