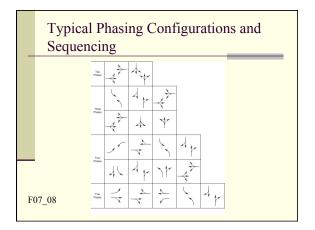
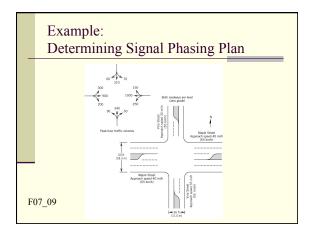
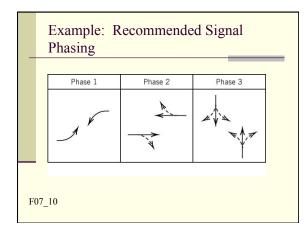

Traffic Signal Timing:	Basic	
Principles		_


- 2 types of signals
 - Pre-timed
 - Traffic actuated
- Objectives of signal timing
 - Reduce average delay of all vehicles
 - Reduce probability of accidents by minimizing possible conflict points
- Objectives may conflict!

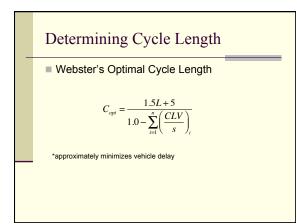
Development of a Traffic Signal Phasing and Timing Plan

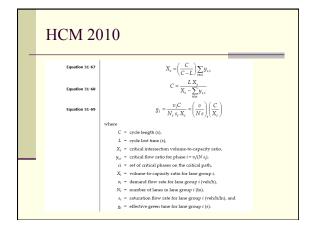

- Select Signal Phasing
 - Determine if protected or permitted left turns will be used
 - HCM Guidelines Consider using protected phase when the product of left turning vehicles and opposing traffic volume exceeds:
 - and opposing traffic volume exceeds:50,000 during the peak hour for one opposing lane
 - 50,000 during the peak hour for one opposing lane
 90,000 for two opposing lanes
 - 110,000 for three or more opposing lanes



Development of a Traffic Signal Phasing and Timing Plan Establish Analysis Lane Groups

- Determine critical lane groups
- Calculate cycle length
- Allocate green time


Туріса	al L	ane Grou	upings for	Analysis
	Number of lanes	Movements by lane	Number of possible lane groups]
	1		(Single-lane approach)	
	2	EXC LT	© 7	
	2	LT + TH		
F07_11	3	EXC LT TH TH + RT		-


Summary

- There is one <u>lane</u> (or lane group) for each phase requiring the maximum amount of effective green time. For this lane or lane group, we have the *critical lane volume* (*CLV*).
- There is an effective green time requirement and critical lane volume for each phase in the cycle.
- The "required green" for the cycle is the sum of the effective green requirements for each phase. We must provide <u>at least</u> this amount of effective green (per hour) to pass the traffic (without queuing).

Determining Cycle Length

$$\mathcal{L}_{min} = \frac{L \times X_c}{X_c - \sum_{i=1}^{r} \left(\frac{CLV}{s}\right)}$$
where:
 $C_{min} = minimum cycle length$
L = total lost time in cycle, sec
 $X_c = critical v/c ration for the intersection$
*Round C to nearest 5 seconds. Choose Xc based on desired
degree of utilization of the intersection.
Cycle lengths should typically be in the range of 40 – 120 seconds
(unless intersection is very complex (5+ phases).

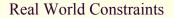
НСМ 2010
Procedure
 Determine flow ration for each lane group and identify critical ratio for each phase.
2. Estimate cycle length. (desired Xc typically ranges from 0.8-0.9. Xc of 1 is capacity operation.)
3. Estimate effective green time for each phase.
4. Check C = g _i + L.

Real World Constraints

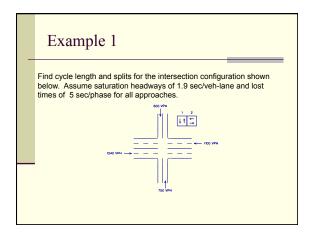
- Cycle length constraints: Cycle lengths typically minimized (increases L, and decreases capacity!) C typically ranges 40-120 sec, do not use excessive cycle length unless have very complex/unusual circumstances
- Display time constraints:
 Do not show drivers something unexpected. General guidelines:
 12 sec (minimum for exclusive left turns)
 15 sec (minimum for through)
- Design flow we use peak 15 minute flowrate for design of intersections.

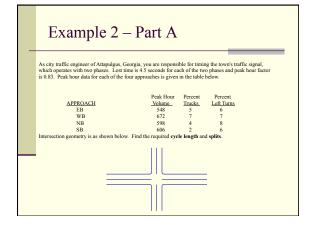
Real World Constraints

Composition:

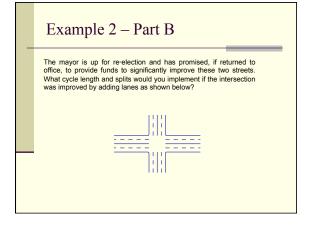

Composition: Saturation flow rate should be adjusted from its "ideal" value (s₀) of 1900 (large metro areas) or 1750 (all other areas) pc/hr/ln. As an approximation, we will use: $s = s_0 \times f_{hv}$

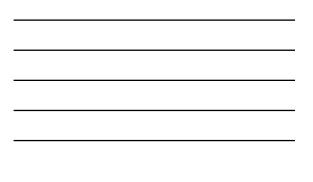
where s = saturation flow rate (pc/hr/lnl)


Where $f_{\mu\nu}$ is the proportion of trucks in the stream. Assume E_T=2, this reduces to: $f_{hr} = \frac{1}{1 + P_T}$


 $J_{sr} = \overline{1} + P_T$ Our approximation to saturation flow rate, then, is: $s = \frac{s_0}{1 + P_T}$


(This is both a variation and simplification of the HCM technique for signalized intersections, but it is sufficient for our purposes).




- Unprotected left turns: Assume that each unprotected left turn is the equivalent of 2.0 through vehicles.
- Pedestrian constraints (where pedestrian volumes are significant):
 Ped time = 5 sec + walk time
 - (Typical walk rate was 4 ft/sec, now 3.5 ft/sec)
- All signal timing methods are approximate checking and adjustments must be made in the field.

