# Mix Design Basics

# Mix Design Goals

adequate workability adequate strength adequate durability minimum cost

### **Cost of Materials**

crushed stone = \$ 12/ton concrete sand = \$ 9/ton Type I cement = \$126/ton

### **Minimum Cost = Minimum Cement**

# Minimizing Cost Cement

minimize the *void space* between aggregate particles that must be filled with cement paste

minimize the *surface area* of the aggregate particles that must be coated with cement paste

# **Minimizing Void Space**



Void content = 48%

Void content = 41%

Use a gravel-sand blend with a dense gradation to minimize the void content of the aggregate

# Minimizing Surface Area



surface area =  $11 \text{ ft}^2$ 

surface area =  $22 \text{ ft}^2$ 

Use the largest NMAS you are allowed to in order to minimize the surface area per cubic yard of concrete

# Minimizing Surface Area



Use gravel instead of crushed stone if possible because it has a lower surface area per unit volume occupied

To obtain good workability, you need enough mortar to fill the voids between the gravel particles, enough cement paste to fill the voids between sand particles, and enough water to both hydrate and lubricate the cement particles.

The main goal of the ACI mix design method is to get the relative <u>volume</u> proportions of the ingredients right in order to ensured good workability.

gravel



Need enough mortar to keep all the gravel particles apart.



sand



Need enough cement paste to keep all the sand grains apart



#### cement



Need enough mixing water to lubricate all the cement grains



Air entrainment adds lubrication without adding additional water

## **Obtaining Adequate Strength**



## Water-Cement Ratio

| Cement | Water     |
|--------|-----------|
| 0%     | Hydration |

| Hydration Products | Air |
|--------------------|-----|
|--------------------|-----|

100% Hydration



# **Obtaining Adequate Strength**

If the structural engineer designs a beam based on a concrete strength of 4500 psi, you have to design your concrete mix to have a strength much higher than that.

# WHY?

**Cylinder Strengths** 



**Cylinder Strengths** 



#### **Cylinder Strengths**



# **Overdesign Factors**

Required Average Compressive Strength When Data Are Not Available to Establish a Standard Deviation

| Specified compressive strength, $f'_{c}$ , psi | Required average compressive strength, $f'_{\rm cr}$ , psi |
|------------------------------------------------|------------------------------------------------------------|
| Less than 3000                                 | $f_{ m c}'$ + 1000                                         |
| 3000 to 5000                                   | $f_{ m c}'$ + 1200                                         |
| Over 5000                                      | $1.10f'_{\rm c}$ + 700                                     |

Adapted from ASTM C94

# **ACI Mix Design**

# Mix Design Example

Coarse aggregate = subangular crushed stone Nominal maximum aggregate size = 3/4" Design strength (f'<sub>c</sub>) = 4500 psi Specified slump = 1-2"

|                                 | Coarse           | Fine             |
|---------------------------------|------------------|------------------|
|                                 | <u>Aggregate</u> | <u>Aggregate</u> |
| Unit weight ( <u>lb</u> /ft³) = | 101              | 106              |
| Bulk specific gravity (dry) =   | 2.574            | 2.548            |
| Bulk specific gravity (SSD) =   | 2.623            | 2.592            |
| Apparent specific gravity =     | 2.705            | 2.664            |
| Absorption capacity $(\%)$ =    | 1.89             | 1.70             |
| Fineness modulus =              | 2.51             | 3.00             |

### Step 1: Select the slump

#### Table 9-6. Recommended Slumps for Various Types of Construction

|                                                     | Slump, mm (in.) |         |  |  |  |
|-----------------------------------------------------|-----------------|---------|--|--|--|
| Concrete construction                               | Maximum*        | Minimum |  |  |  |
| Reinforced foundation<br>walls and footings         | 75 (3)          | 25 (1)  |  |  |  |
| Plain footings, caissons, and<br>substructure walls | 75 (3)          | 25 (1)  |  |  |  |
| Beams and reinforced walls                          | 100 (4)         | 25 (1)  |  |  |  |
| Building columns                                    | 100 (4)         | 25 (1)  |  |  |  |
| Pavements and slabs                                 | 75 (3)          | 25 (1)  |  |  |  |
| Mass concrete                                       | 75 (3)          | 25 (1)  |  |  |  |

### Step 2: Select the NMAS



NMAS  $\leq 0.75 \times \text{clear space}$ 

### Step 3: Estimate the water and air

Table 9-5 (Inch-Pound Units). Approximate Mixing Water and Target Air Content Requirements for Different Slumps and Nominal Maximum Sizes of Aggregate

|                                 | Water, pounds per cubic yard of concrete, for indicated sizes of aggregate* |                        |       |              |             |             |         |         |
|---------------------------------|-----------------------------------------------------------------------------|------------------------|-------|--------------|-------------|-------------|---------|---------|
| Slump, in.                      | ¾ in.                                                                       | ½ in.                  | ¾ in. | 1 in.        | 1½ in.      | 2 in.**     | 3 in.** | 6 in.** |
|                                 | 2                                                                           |                        | N     | on-air-entra | ined concre | ete         |         |         |
| 1 to 2                          | 350                                                                         | 335                    | 315   | 300          | 275         | 260         | 220     | 190     |
| 3 to 4                          | 385                                                                         | 365                    | 340   | 325          | 300         | 285         | 245     | 210     |
| 6 to 7                          | 410                                                                         | 385                    | 360   | 340          | 315         | 300         | 270     | _       |
| Approximate amount of           |                                                                             |                        |       |              |             |             |         |         |
| entrapped air in non-air-       | 3                                                                           | 2.5                    | 2     | 1.5          | 1           | 0.5         | 0.3     | 0.2     |
| entrained concrete, percent     |                                                                             |                        |       |              |             |             |         |         |
|                                 |                                                                             | Air-entrained concrete |       |              |             |             |         |         |
| 1 to 2                          | 305                                                                         | 295                    | 280   | 270          | 250         | 240         | 205     | 180     |
| 3 to 4                          | 340                                                                         | 325                    | 305   | 295          | 275         | 265         | 225     | 200     |
| 6 to 7                          | 365                                                                         | 345                    | 325   | 310          | 290         | 280         | 260     |         |
| Recommended average total       |                                                                             | 0.000000               |       |              |             | 10030867901 |         |         |
| air content, percent, for level |                                                                             |                        |       |              |             |             |         |         |
| of exposure:+                   |                                                                             |                        |       |              |             |             |         |         |
| Mild exposure                   | 4.5                                                                         | 4.0                    | 3.5   | 3.0          | 2.5         | 2.0         | 1.5     | 1.0     |
| Moderate exposure               | 6.0                                                                         | 5.5                    | 5.0   | 4.5          | 4.5         | 3.5         | 3.5     | 3.0     |
| Severe exposure                 | 7.5                                                                         | 7.0                    | 6.0   | 6.0          | 5.5         | 5.0         | 4.5     | 4.0     |

\* These quantities of mixing water are for use in computing cement factors for trial batches. They are maximums for reasonably well-shaped angular coarse aggregates graded within limits of accepted specifications.

# **Questions to Ponder**

1. Why does the amount of water required to obtain a desired slump decrease with increasing NMAS?

|                                                                                   | Water, pounds per cubic yard of concrete, for indicated sizes of aggregate* |     |     |     |     |     |     |         |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|---------|
| Slump, in.                                                                        | ¾ in. ½ in. ¾ in. 1 in. 1½ in. 2 in.** 3 in.** 6 in.**                      |     |     |     |     |     |     | 6 in.** |
|                                                                                   | Non-air-entrained concrete                                                  |     |     |     |     |     |     |         |
| 1 to 2                                                                            | 350                                                                         | 335 | 315 | 300 | 275 | 260 | 220 | 190     |
| 3 to 4                                                                            | 385                                                                         | 365 | 340 | 325 | 300 | 285 | 245 | 210     |
| 6 to 7                                                                            | 410                                                                         | 385 | 360 | 340 | 315 | 300 | 270 | —       |
| Approximate amount of<br>entrapped air in non-air-<br>entrained concrete, percent | 3                                                                           | 2.5 | 2   | 1.5 | 1   | 0.5 | 0.3 | 0.2     |

### Effect of NMAS on Paste Volume



### Effect of NMAS on Paste Volume



# **Questions to Ponder**

2. Why does the amount of entrapped air in a concrete mix decrease with increasing NMAS?

|                                                                                   | Water, pounds per cubic yard of concrete, for indicated sizes of aggregate* |     |     |     |     |     |     |         |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|---------|
| Slump, in.                                                                        | ¾ in. ½ in. ¾ in. 1 in. 1½ in. 2 in.** 3 in.** 6 in.**                      |     |     |     |     |     |     | 6 in.** |
|                                                                                   | Non-air-entrained concrete                                                  |     |     |     |     |     |     |         |
| 1 to 2                                                                            | 350                                                                         | 335 | 315 | 300 | 275 | 260 | 220 | 190     |
| 3 to 4                                                                            | 385                                                                         | 365 | 340 | 325 | 300 | 285 | 245 | 210     |
| 6 to 7                                                                            | 410                                                                         | 385 | 360 | 340 | 315 | 300 | 270 | —       |
| Approximate amount of<br>entrapped air in non-air-<br>entrained concrete, percent | 3                                                                           | 2.5 | 2   | 1.5 | 1   | 0.5 | 0.3 | 0.2     |

### Effect of NMAS on Paste Volume



# **Questions to Ponder**

3. Why does the target air content in an air-entrained mix decrease with increasing NMAS?

|                                 | Water, pounds per cubic yard of concrete, for indicated sizes of aggregate* |       |       |             |             |         |         |         |
|---------------------------------|-----------------------------------------------------------------------------|-------|-------|-------------|-------------|---------|---------|---------|
| Slump, in.                      | ¾ in.                                                                       | ½ in. | ¾ in. | 1 in.       | 1½ in.      | 2 in.** | 3 in.** | 6 in.** |
|                                 |                                                                             |       |       | Air-entrain | ed concrete | •       |         |         |
| 1 to 2                          | 305                                                                         | 295   | 280   | 270         | 250         | 240     | 205     | 180     |
| 3 to 4                          | 340                                                                         | 325   | 305   | 295         | 275         | 265     | 225     | 200     |
| 6 to 7                          | 365                                                                         | 345   | 325   | 310         | 290         | 280     | 260     | —       |
| Recommended average total       |                                                                             |       |       |             |             |         |         |         |
| air content, percent, for level |                                                                             |       |       |             |             |         |         |         |
| of exposure:†                   |                                                                             |       |       |             |             |         |         |         |
| Mild exposure                   | 4.5                                                                         | 4.0   | 3.5   | 3.0         | 2.5         | 2.0     | 1.5     | 1.0     |
| Moderate exposure               | 6.0                                                                         | 5.5   | 5.0   | 4.5         | 4.5         | 3.5     | 3.5     | 3.0     |
| Severe exposure                 | 7.5                                                                         | 7.0   | 6.0   | 6.0         | 5.5         | 5.0     | 4.5     | 4.0     |

### Effect of NMAS on Paste Volume



## Air Content



Paste Air Content Assume 7%

 $\frac{\text{Concrete Air Content}}{0.4 \times 7\%} = 2.8\%$ 

## Air Content



Paste Air Content Assume 7%

 $\frac{\text{Concrete Air Content}}{0.3 \times 7\%} = 2.1\%$
#### Step 3: Estimate the water and air

Table 9-5 (Inch-Pound Units). Approximate Mixing Water and Target Air Content Requirements for Different Slumps and Nominal Maximum Sizes of Aggregate

|                                 | Water, pounds per cubic yard of concrete, for indicated sizes of aggregate* |           |       |              |                  |                  |         |         |
|---------------------------------|-----------------------------------------------------------------------------|-----------|-------|--------------|------------------|------------------|---------|---------|
| Slump, in.                      | ¾ in.                                                                       | ½ in.     | ¾ in. | 1 in.        | 1½ in.           | 2 in.**          | 3 in.** | 6 in.** |
|                                 | 2                                                                           |           | N     | on-air-entra | ined concr       | ete              |         | 6       |
| 1 to 2                          | 350                                                                         | 335       | 315   | 300          | 275              | 260              | 220     | 190     |
| 3 to 4                          | 385                                                                         | 365       | 340   | 325          | 300              | 285              | 245     | 210     |
| 6 to 7                          | 410                                                                         | 385       | 360   | 340          | 315              | 300              | 270     | _       |
| Approximate amount of           |                                                                             |           |       |              |                  |                  |         |         |
| entrapped air in non-air-       | 3                                                                           | 2.5       | 2     | 1.5          | 1                | 0.5              | 0.3     | 0.2     |
| entrained concrete, percent     |                                                                             |           |       |              |                  |                  |         |         |
|                                 |                                                                             |           |       | Air-entrain  | ed concrete      | 9                |         |         |
| 1 to 2                          | 305                                                                         | 295       | 280   | 270          | 250              | 240              | 205     | 180     |
| 3 to 4                          | 340                                                                         | 325       | 305   | 295          | 275              | 265              | 225     | 200     |
| 6 to 7                          | 365                                                                         | 345       | 325   | 310          | 290              | 280              | 260     |         |
| Recommended average total       |                                                                             | 0.0000000 |       | 0.000000000  | 1000 100 percent | A 40 9986 990 11 |         |         |
| air content, percent, for level |                                                                             |           |       |              |                  |                  |         |         |
| of exposure:+                   |                                                                             |           |       |              |                  |                  |         |         |
| Mild exposure                   | 4.5                                                                         | 4.0       | 3.5   | 3.0          | 2.5              | 2.0              | 1.5     | 1.0     |
| Moderate exposure               | 6.0                                                                         | 5.5       | 5.0   | 4.5          | 4.5              | 3.5              | 3.5     | 3.0     |
| Severe exposure                 | 7.5                                                                         | 7.0       | 6.0   | 6.0          | 5.5              | 5.0              | 4.5     | 4.0     |

\* These quantities of mixing water are for use in computing cement factors for trial batches. They are maximums for reasonably well-shaped angular coarse aggregates graded within limits of accepted specifications.

#### Step 4: Adjust for Aggregate Shape

| Aggregate<br>Shape         | Water Reduction (pounds per cubic yard) |
|----------------------------|-----------------------------------------|
| Crushed stone (angular)    | 0                                       |
| Crushed stone (subangular) | 20                                      |
| Gravel (some crushed)      | 35                                      |
| Gravel (well rounded)      | 45                                      |

# **Questions to Ponder**

4. Why does the water required to obtain a given slump change as a function of aggregate shape?

| Aggregate<br>Shape         | Water Reduction (pounds per cubic yard) |
|----------------------------|-----------------------------------------|
| Crushed stone (angular)    | 0                                       |
| Crushed stone (subangular) | 20                                      |
| Gravel (some crushed)      | 35                                      |
| Gravel (well rounded)      | 45                                      |

# Minimizing Surface Area



surface area =  $6.0 \text{ ft}^2/\text{ft}^3$ 

surface area =  $4.8 \text{ ft}^2/\text{ft}^3$ 

# Mix Design Example

Coarse aggregate = subangular crushed stone Nominal maximum aggregate size = 3/4" Design strength (f'<sub>c</sub>) = 4500 psi Specified slump = 1-2"

|                                 | Coarse           | Fine             |
|---------------------------------|------------------|------------------|
|                                 | <u>Aggregate</u> | <u>Aggregate</u> |
| Unit weight ( <u>lb</u> /ft³) = | 101              | 106              |
| Bulk specific gravity (dry) =   | 2.574            | 2.548            |
| Bulk specific gravity (SSD) =   | 2.623            | 2.592            |
| Apparent specific gravity =     | 2.705            | 2.664            |
| Absorption capacity $(\%)$ =    | 1.89             | 1.70             |
| Fineness modulus =              | 2.51             | 3.00             |

#### Step 4: Adjust for Aggregate Shape

| Aggregate<br>Shape         | Water Reduction (pounds per cubic yard) |
|----------------------------|-----------------------------------------|
| Crushed stone (angular)    | 0                                       |
| Crushed stone (subangular) | 20                                      |
| Gravel (some crushed)      | 35                                      |
| Gravel (well rounded)      | 45                                      |

#### Step 5: Select the w/cm ratio

Table 9-3 (Inch-Pound Units). Relationship Between Water to Cementitious Material Ratio and Compressive Strength of Concrete

|      | Compressive              | Water-cementitious materials ratio by mass |                           |  |  |
|------|--------------------------|--------------------------------------------|---------------------------|--|--|
|      | strength at 28 days, psi | Non-air-entrained<br>concrete              | Air-entrained<br>concrete |  |  |
|      | 7000                     | 0.33                                       | -                         |  |  |
|      | 6000                     | 0.41                                       | 0.32                      |  |  |
| r'   | 5000                     | 0.48                                       | 0.40                      |  |  |
| cr 🥣 | 4000                     | 0.57                                       | 0.48                      |  |  |
|      | 3000                     | 0.68                                       | 0.59                      |  |  |
|      | 2000                     | 0.82                                       | 0.74                      |  |  |

Strength is based on cylinders moist-cured 28 days in accordance with ASTM C 31 (AASHTO T 23). Relationship assumes nominal maximum size aggregate of about <sup>3</sup>/<sub>4</sub> in. to 1 in.

# **Overdesign Factors**

#### Required Average Compressive Strength When Data Are Not Available to Establish a Standard Deviation

| Specified compressive strength, $f'_{c}$ , psi | Required average compressive strength, $f'_{\rm cr}$ , psi |
|------------------------------------------------|------------------------------------------------------------|
| Less than 3000                                 | $f_{ m c}'$ + 1000                                         |
| 3000 to 5000                                   | $f_{ m c}'$ + 1200                                         |
| Over 5000                                      | $1.10f'_{\rm c}$ + 700                                     |

Adapted from ASTM C94

#### Step 5: Select the w/c ratio

Table 9-3 (Inch-Pound Units). Relationship Between Water to Cementitious Material Ratio and Compressive Strength of Concrete

|                             | Compressive | Water-cementitious materials ratio by mass |                           |  |  |
|-----------------------------|-------------|--------------------------------------------|---------------------------|--|--|
| strength at<br>28 days, psi |             | Non-air-entrained<br>concrete              | Air-entrained<br>concrete |  |  |
|                             | 7000        | 0.33                                       | —                         |  |  |
|                             | 6000        | 0.41                                       | 0.32                      |  |  |
| f'                          | 5000        | 0.48                                       | 0.40                      |  |  |
| cr 🥣                        | 4000        | 0.57                                       | 0.48                      |  |  |
|                             | 3000        | 0.68                                       | 0.59                      |  |  |
|                             | 2000        | 0.82                                       | 0.74                      |  |  |

Strength is based on cylinders moist-cured 28 days in accordance with ASTM C 31 (AASHTO T 23). Relationship assumes nominal maximum size aggregate of about <sup>3</sup>/<sub>4</sub> in. to 1 in.

# **Questions to Ponder**

5. Why is the w/cm ratio different for air-entrained concrete compared to non-air-entrained concrete?

| Compressive                 | Water-cementitious materials ratio by mass |                           |  |  |
|-----------------------------|--------------------------------------------|---------------------------|--|--|
| strength at<br>28 days, psi | Non-air-entrained<br>concrete              | Air-entrained<br>concrete |  |  |
| 7000                        | 0.33                                       |                           |  |  |
| 6000                        | 0.41                                       | 0.32                      |  |  |
| 5000                        | 0.48                                       | 0.40                      |  |  |
| 4000                        | 0.57                                       | 0.48                      |  |  |
| 3000                        | 0.68                                       | 0.59                      |  |  |
| 2000                        | 0.82                                       | 0.74                      |  |  |

#### Effect of Air Content on Strength



#### Step 6: Calculate the cement weight

 $W_{cement} = \frac{W_{water}}{w/c ratio}$ 

#### Step 7: Estimate coarse aggregate

#### Table 9-4. Bulk Volume of Coarse Aggregate Per Unit Volume of Concrete

| Nominal<br>maximum<br>size of<br>aggregate | Bulk volume of dry-rodded coarse<br>aggregate per unit volume of concrete for<br>different fineness moduli of fine aggregate* |      |      |      | $\Leftarrow \frac{b}{b_0}$ |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------|------|------|----------------------------|
| mm (in.)                                   | 2.40                                                                                                                          | 2.60 | 2.80 | 3.00 |                            |
| 9.5 (¾)                                    | 0.50                                                                                                                          | 0.48 | 0.46 | 0.44 |                            |
| 12.5 (1/2)                                 | 0.59                                                                                                                          | 0.57 | 0.55 | 0.53 |                            |
| 19 (¾)                                     | 0.66                                                                                                                          | 0.64 | 0.62 | 0.60 |                            |
| 25 (1)                                     | 0.71                                                                                                                          | 0.69 | 0.67 | 0.65 |                            |
| 37.5 (1½)                                  | 0.75                                                                                                                          | 0.73 | 0.71 | 0.69 |                            |
| 50 (2)                                     | 0.78                                                                                                                          | 0.76 | 0.74 | 0.72 |                            |
| 75 (3)                                     | 0.82                                                                                                                          | 0.80 | 0.78 | 0.76 |                            |
| 150 (6)                                    | 0.87                                                                                                                          | 0.85 | 0.83 | 0.81 |                            |

\*Bulk volumes are based on aggregates in a dry-rodded condition as described in ASTM C 29 (AASHTO T 19). Adapted from ACI 211.1.

Source: Design and Control of Concrete Mixtures (PCA, 2003)

# What does b/b<sub>o</sub> represent?



# Ratio of bulk aggregate volume (b) to bulk concrete volume $(b_0)$

# Mix Design Example

Coarse aggregate = subangular crushed stone Nominal maximum aggregate size = 3/4" Design strength (f'<sub>c</sub>) = 4500 psi Specified slump = 1-2"

|                                 | Coarse           | Fine             |
|---------------------------------|------------------|------------------|
|                                 | <u>Aggregate</u> | <u>Aggregate</u> |
| Unit weight ( <u>lb</u> /ft³) = | 101              | 106              |
| Bulk specific gravity (dry) =   | 2.574            | 2.548            |
| Bulk specific gravity (SSD) =   | 2.623            | 2.592            |
| Apparent specific gravity =     | 2.705            | 2.664            |
| Absorption capacity $(\%)$ =    | 1.89             | 1.70             |
| Fineness modulus =              | 2.51             | 3.00             |

#### Step 7: Estimate coarse aggregate

#### Table 9-4. Bulk Volume of Coarse Aggregate Per Unit Volume of Concrete

| Nominal<br>maximum<br>size of<br>aggregate | Bulk volume of dry-rodded coarse<br>aggregate per unit volume of concrete for<br>different fineness moduli of fine aggregate* |      |      |      | $\Leftarrow \frac{b}{b_a}$ |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------|------|------|----------------------------|
| mm (in.)                                   | 2.40                                                                                                                          | 2.60 | 2.80 | 3.00 |                            |
| 9.5 (%)                                    | 0.50                                                                                                                          | 0.48 | 0.46 | 0.44 |                            |
| 12.5 (½)                                   | 0.59                                                                                                                          | 0.57 | 0.55 | 0.53 |                            |
| 19 (¾)                                     | 0.66                                                                                                                          | 0.64 | 0.62 | 0.60 |                            |
| 25 (1)                                     | 0.71                                                                                                                          | 0.69 | 0.67 | 0.65 |                            |
| 37.5 (1½)                                  | 0.75                                                                                                                          | 0.73 | 0.71 | 0.69 |                            |
| 50 (2)                                     | 0.78                                                                                                                          | 0.76 | 0.74 | 0.72 |                            |
| 75 (3)                                     | 0.82                                                                                                                          | 0.80 | 0.78 | 0.76 |                            |
| 150 (6)                                    | 0.87                                                                                                                          | 0.85 | 0.83 | 0.81 |                            |

\*Bulk volumes are based on aggregates in a dry-rodded condition as described in ASTM C 29 (AASHTO T 19). Adapted from ACI 211.1.

Source: Design and Control of Concrete Mixtures (PCA, 2003)

#### Step 7: Estimate coarse aggregate

$$V_{\text{gravel}}^{\text{bulk}} = (b/b_o) V_{\text{concrete}}^{\text{bulk}}$$
$$W_{\text{gravel}} = V_{\text{gravel}}^{\text{bulk}} \gamma_{\text{gravel}}^{\text{bulk}} \Leftarrow \frac{\text{dry-rodded}}{\text{unit weight}}$$
$$W_{\text{gravel}} = (b/b_o) V_{\text{concrete}}^{\text{bulk}} \gamma_{\text{gravel}}^{\text{bulk}}$$

# Step 8: Estimate fine aggregate Estimated Weight Method

| NMAS | First Estimate of Concrete Unit Mass (Ib/ft <sup>3</sup> ) |                        |  |
|------|------------------------------------------------------------|------------------------|--|
| (in) | Non-Air-Entrained Concrete                                 | Air-Entrained Concrete |  |
| 3/8  | 142.0                                                      | 137.5                  |  |
| 1/2  | 144.0                                                      | 139.0                  |  |
| 3⁄4  | 146.5                                                      | 141.5                  |  |
| 1    | 148.5                                                      | 143.5                  |  |
| 1½   | 151.0                                                      | 146.0                  |  |
| 2    | 153.0                                                      | 147.5                  |  |
| 3    | 155.5                                                      | 150.0                  |  |
| 6    | 157.5                                                      | 152.0                  |  |

# **Questions to Ponder**

6. Why does the unit weight rise with increasing NMAS?

| NMAS | First Estimate of Concrete Unit Mass (lb/ft <sup>3</sup> ) |                        |  |
|------|------------------------------------------------------------|------------------------|--|
| (in) | Non-Air-Entrained Concrete                                 | Air-Entrained Concrete |  |
| 3/8  | 142.0                                                      | 137.5                  |  |
| 1/2  | 144.0                                                      | 139.0                  |  |
| 3⁄4  | 146.5                                                      | 141.5                  |  |
| 1    | 148.5                                                      | 143.5                  |  |
| 1½   | 151.0                                                      | 146.0                  |  |
| 2    | 153.0                                                      | 147.5                  |  |
| 3    | 155.5                                                      | 150.0                  |  |
| 6    | 157.5                                                      | 152.0                  |  |

### Effect of NMAS on Unit Weight



### Effect of NMAS on Unit Weight



#### Effect of NMAS on Paste Volume

Assume w/c = 0.5  $\frac{1.5 \text{ W}_{\text{cement}}}{\text{RD}_{\text{paste}}} = \frac{0.5 \text{ W}_{\text{cement}}}{1.00} + \frac{1.0 \text{ W}_{\text{cement}}}{3.15}$   $\text{RD}_{\text{paste}} = 1.83$   $\text{RD}_{\text{aggregate}} = 2.65 \text{ (typical)}$ 

### Effect of NMAS on Unit Weight



# **Questions to Ponder**

7. Why is the ratio of non-air-entrained density to air-entrained density a function of NMAS?

| NMAS | First Estimate of Concrete Unit Mass (lb/ft <sup>3</sup> ) |                        |  |
|------|------------------------------------------------------------|------------------------|--|
| (in) | Non-Air-Entrained Concrete                                 | Air-Entrained Concrete |  |
| 3/8  | 142.0                                                      | 137.5                  |  |
| 1/2  | 144.0                                                      | 139.0                  |  |
| 3⁄4  | 146.5                                                      | 141.5                  |  |
| 1    | 148.5                                                      | 143.5                  |  |
| 1½   | 151.0                                                      | 146.0                  |  |
| 2    | 153.0                                                      | 147.5                  |  |
| 3    | 155.5                                                      | 150.0                  |  |
| 6    | 157.5                                                      | 152.0                  |  |

### Effect of NMAS on Unit Weight



# Air Content



Paste Air Content Assume 16%

 $\frac{\text{Concrete Air Content}}{0.4 \times 16\%} = 6.4\%$ 

# Air Content



Paste Air Content Assume 16%

 $\frac{\text{Concrete Air Content}}{0.3 \times 16\%} = 4.8\%$ 

# Step 8: Estimate fine aggregate Estimated Weight Method

$$W_{total} = W_{cement} + W_{gravel} + W_{sand} + W_{water}$$
$$W_{sand} = W_{total} - \left(W_{cement} + W_{gravel} + W_{water}\right)$$

# Step 8: Estimate fine aggregate Absolute Volume Method

$$V_{total} = V_{cement} + V_{gravel} + V_{sand} + V_{water} + V_{air}$$

$$\square$$

$$V_{sand} = V_{total} - \left(V_{cement} + V_{gravel} + V_{water} + V_{air}\right)$$

CIVL 3137

# Step 8: Estimate fine aggregate Absolute Volume Method

$$V_{\text{sand}} = V_{\text{total}} - \left(V_{\text{cement}} + V_{\text{gravel}} + V_{\text{water}} + V_{\text{air}}\right)$$
$$V_{\text{sand}} = V_{\text{total}} - \frac{1}{\gamma_{w}} \left(\frac{W_{\text{cement}}}{3.15} + \frac{W_{\text{gravel}}}{G_{\text{gravel}}^{\text{bulk}}} + \frac{W_{\text{water}}}{1.00}\right) - V_{\text{air}}$$

$$W_{sand} = V_{sand} \times G_{sand}^{bulk} \times \gamma_{w}$$

# Mix Design Example

Nominal maximum aggregate size = 3/4" Design strength (<u>f</u>'<sub>c</sub>) = 4500 psi Specified slump = 1-2"

|                                | Coarse           | Fine             |
|--------------------------------|------------------|------------------|
|                                | <u>Aggregate</u> | <u>Aggregate</u> |
| Unit weight (lb/ft³) =         | 101              | 106              |
| Bulk specific gravity (dry) =  | 2.574            | 2.548            |
| Bulk specific gravity (SSD) =  | 2.623            | 2.592            |
| Apparent specific gravity =    | 2.705            | 2.664            |
| Absorption capacity ( $\%$ ) = | 1.89             | 1.70             |
| Fineness modulus =             | 2.51             | 3.00             |

#### Step 9: Adjust for Aggregate Moisture

1. Increase  $W_{water}$  by an amount equal to the weight of water needed to saturate the fine and coarse aggregate.



Since we did our calculations based on bulk OD specific gravity ...

... we've assumed the pervious pores are filled with air.



#### If we don't add enough water to fill those pervious pores ...

... the aggregate will suck water out of the cement paste.

# Mix Design Example

Nominal maximum aggregate size = 3/4" Design strength (<u>f</u>'<sub>c</sub>) = 4500 psi Specified slump = 1-2"

|                                 | Coarse           | Fine             |
|---------------------------------|------------------|------------------|
|                                 | <u>Aggregate</u> | <u>Aggregate</u> |
| Unit weight ( <u>lb</u> /ft³) = | 101              | 106              |
| Bulk specific gravity (dry) =   | 2.574            | 2.548            |
| Bulk specific gravity (SSD) =   | 2.623            | 2.592            |
| Apparent specific gravity =     | 2.705            | 2.664            |
| Absorption capacity (%) =       | 1.89             | 1.70             |
| Fineness modulus =              | 2.51             | 3.00             |

#### Step 9: Adjust for Aggregate Moisture

- 1. Increase  $W_{water}$  by an amount equal to the weight of water needed to saturate the fine and coarse aggregate.
- 2. Increase  $W_{sand}$  and  $W_{gravel}$  by an amount equal to the moisture contents of the aggregate stockpiles.
## If our mix design calls for 1000 lb of dry aggregate ...







... then we have to weigh up 1000(1.10) = 1100 lb of moist aggregate.

## Mix Design Example

Nominal maximum aggregate size = 3/4" Design strength (<u>f</u>'<sub>c</sub>) = 4500 psi Specified slump = 1-2"

|                                 | Coarse           | Fine             |
|---------------------------------|------------------|------------------|
|                                 | <u>Aggregate</u> | <u>Aggregate</u> |
| Unit weight ( <u>lb</u> /ft³) = | 101              | 106              |
| Bulk specific gravity (dry) =   | 2.574            | 2.548            |
| Bulk specific gravity (SSD) =   | 2.623            | 2.592            |
| Apparent specific gravity =     | 2.705            | 2.664            |
| Absorption capacity ( $\%$ ) =  | 1.89             | 1.70             |
| Fineness modulus =              | 2.51             | 3.00             |

## Step 9: Adjust for Aggregate Moisture

- 1. Increase  $W_{water}$  by an amount equal to the weight of water needed to saturate the fine and coarse aggregate.
- 2. Increase  $W_{sand}$  and  $W_{gravel}$  by an amount equal to the moisture contents of the aggregate stockpiles.
- 3. Decrease  $W_{water}$  by the same amount you increased  $W_{sand}$  and  $W_{gravel}$ .

## Since we've weighed up 1000 lb of aggregate + 100 lb of water ...



... we have to reduce the amount of water we add from the faucet by 100 lb.