CIVL 3137 Homework 1

Sieve	Cumulative Mass
Opening	Retained (g)
19 mm (3/4")	0.0
12.5 mm (1/2")	64.0
9.5 mm (3/8")	254.6
4.75 mm (No. 4)	883.4
2.36 mm (No. 8)	1390.3
1.18 mm (No. 16)	1678.3
0.6 mm (No. 30)	1851.8
0.3 mm (No. 50)	1992.0
0.15 mm (No. 100)	2071.6
0.075 mm (No. 200)	2120.9
Pan	2195.6

1. Results of a sieve analysis on a 2197.0-g sample of crusher-run gravel are as follows:

Calculate the gradation curve (percent passing as a function of sieve opening) and plot it (by hand) on both a standard graduation chart and a 0.45-power graduation chart downloaded from the course website. NOTE: If you wish, you can use a spreadsheet to do the calculations, but include at least two sample calculations (by hand) for two of the middle sieve openings.

- 2. What is the nominal maximum aggregate size of the aggregate in the previous problem?
- 3. Would this aggregate qualify as uniformly graded, open-graded, gap-graded, or dense-graded?
- 4. Calculate the FHWA theoretical maximum density curve for an aggregate with a maximum size of ¾" and plot the results on both of the graphs you produced in Problem 1. NOTE: If you wish, you can use a spreadsheet to do the calculations, but include at least two sample calculations (by hand) for two of the middle sieve openings.
- 5. If you needed to sample this aggregate from a stockpile in the construction yard, how large of a field sample would you need to retrieve? How many times would you have to split the field sample to get a small enough sample to do the gradation analysis?