

1

3

5

Virtual Work for Frames

Compute the deflection at point C on the frame shown below.
Include only the effects of bending in your virtual work equation (no axial work).

2

Virtual Work for Frames

The next step is to find the equation for moment in each section of the frame.
Consider section $A B$

$$
\mathrm{V}^{+} \sum M_{\text {cut }}=0=M_{A B} \quad M_{A B}=0
$$

4

6

7

$$
\begin{aligned}
& \text { Virtual Work for Frames } \\
& \text { The virtual work equations are: } \\
& \Delta_{C}=\int_{A}^{B} \frac{M_{A B} m_{A B}}{E I} d y+\int_{B}^{C} \frac{M_{B C} m_{B C}}{E I} d x+\int_{D}^{C} \frac{M_{D C} m_{D C}}{E I} d x+\int_{D}^{E} \frac{M_{D E} m_{D E}}{E I} d y \\
& \text { Substituting the moment expressions into the virtual work } \\
& \text { equation and integrating yields the following: } \\
& \qquad \begin{aligned}
\Delta_{C} & =\int_{0}^{8} \frac{(6 x) x}{2 E I} d x+\int_{0}^{8} \frac{\left(6 x_{1}\right) x_{1}}{2 E I} d x_{1}=\int_{0}^{8} \frac{6 x^{2}}{E l} d x=\left.\frac{2 x^{3}}{E I}\right|_{0} ^{8} \\
= & \frac{1,024 k f t^{3}}{E I}=\frac{1,024 k f t^{3}\left(1,728 i n^{3} / f t^{3}\right)}{(29,000 k s i)\left(3,500 i n^{4}\right)}=0.017 i n
\end{aligned}
\end{aligned}
$$

9

11

Virtual Work for Frames

In this problem, the virtual moments are the real moments divided by 12 (from superposition).

8

Virtual Work for Frames

Compute the slope at point C on the frame shown below. Include only the effects of bending in your virtual work equation (no axial work).

10

Virtual Work for Frames

The next step is to find the equation for moment in each section of the frame
Consider section AB

$$
\mathrm{U}^{+} \sum M_{\text {cut }}=0=m_{\theta A B} \quad m_{\theta A B}=0
$$

12

13

15

17

14

16

Virtual Work for Frames

Repeat the previous example and include the effects of axial work.
In order to compute the axial work, we need the axial force in the real and virtual loading systems

18

19

21

23

20

22

Virtual Work for Frames

The virtual work equations for axial forces are:

$$
\Delta_{C}=\sum \frac{n N L}{A E}
$$

Substituting the values for the axial forces into the virtual work equations yields the following:

$$
\begin{aligned}
\Delta_{C} & =\frac{(-0.5)(-6 k)(120 \mathrm{in})}{A E}+\frac{(-0.5)(-6 k)(120 \mathrm{in})}{A E} \\
& =\frac{720 \mathrm{k} \text { in }}{A E}=\frac{720 \mathrm{kin}}{(29,000 \mathrm{ksi})\left(35 \mathrm{in}^{2}\right)}=0.0007 \mathrm{in}
\end{aligned}
$$

24

25

27

29

26

30

31

Virtual Work for Frames

$>$ In problems involving both bending and axial deformation, be careful with the units.
$>$ Also, note that the contribution of the axial deformation is 5% of the total deformation.
$>$ This is typical of the relative size of the bending and the axial effects in frame-deflection problems.
$>$ Therefore, it is usually permissible to neglect the effect of axial deformation in such cases.

33

Virtual Work for Frames

Virtual Strain Energy From Shear

Consider the following beam and a small element $d x$

Virtual Work for Frames

The virtual work equations for axial forces are:

$$
\theta_{C}=\sum \frac{n_{\theta} N L}{A E}
$$

Substituting the values for the axial forces into the virtual work equations yields the following:

$$
\theta_{C}=\frac{(6 k)(120 i n)}{16 A E}-\frac{(6 k)(120 i n)}{16 A E}=0
$$

The contribution to the slope at point C from the axial energy is slope is zero.
The total slope at point C due to bending moment and axial force work is zero.

32

Virtual Work for Frames

The primary cause of deformation in beams and frames is due to bending strain
$>$ However, in some structures, the additional deformation due to axial and shear forces, torsion, and perhaps temperature may be important.
$>$ We have already discussed deformation due to bending moments and axial forces.
$>$ In this section, we will consider the effect of shear, torsion, and temperature on the deformation of linear elastic structures.

34

Virtual Work for Frames

Virtual Strain Energy From Shear

$>$ The shearing deformation $d y$ caused by the real loads is $d y$
$=\gamma d x$, where γ is the shear strain.
$>$ Since we are assuming the material is linear and elastic, then Hooke's law applies
$>$ The shear strain is related to the shear stress by $\gamma=\tau / G$, where τ is
 the shear stress and G is the shearing modulus of elasticity.

36

37

Virtual Work for Frames

Virtual Strain Energy From Shear

$>$ Integrating the expression $d U_{i}=v d y$ over the entire beam gives:

$$
U_{\text {shear }}=\int_{0}^{L} K\left(\frac{v V}{G A}\right) d x
$$

$>$ The form factor K is based on the cross-sectional area:
$\boldsymbol{K}=1.2$ for rectangular sections
$\boldsymbol{K}=10 / 9$ for circular sections
$K \approx 1$ for I-beams, where A is the area of the web

41

Virtual Work for Frames

Virtual Strain Energy From Shear

$>$ Integrating the expression $d U_{i}=v d y$ over the entire beam gives:

$$
U_{s h e a r}=\int_{0}^{L} K\left(\frac{v V}{G A}\right) d x
$$

$>$ Remember that v is the shear due to the virtual load and V is the shear due to the real loads.

38

40

Virtual Work for Frames

Virtual Strain Energy From Torsion
$>$ This torque causes a shear strain: $\gamma=\frac{c d \theta}{d x}$
$>$ For a linear-elastic response: $\quad \gamma=\frac{\tau}{G}$

$\tau=\frac{T c}{J}$

42

43

45

Virtual Work for Frames

Virtual Strain Energy From Temperature

$\delta x=\alpha \Delta T_{m} d x$

$T_{m}=\frac{T_{1}+T_{2}}{2}$

47

Virtual Work for Frames

Virtual Strain Energy From Torsion

If a virtual load is applied to the structure that causes an internal virtual torque \boldsymbol{t}, then after applying the real loads, virtual strain energy will be:

44

Virtual Work for Frames

Virtual Strain Energy From Temperature
$>$ Consider a structure member is subjected to a temperature difference across its depth.
$>$ For discussion, we will choose the most common case of a beam having a neutral axis located at the mid-depth c of the beam
$>$ First compute the amount of rotation of a differential element $d x$ of the beam caused by the thermal gradient.

46

Virtual Work for Frames

Virtual Strain Energy From Temperature

If a virtual load is applied to the structure that causes an internal virtual torque \boldsymbol{m}, then after applying the real loads, virtual strain energy will be:

$$
d U_{t e m p}=\int_{0}^{L} \frac{m \alpha \Delta T_{m}}{c} d x
$$

49

End of Virtual Work - Frames

Any questions?

50

