Deflections

- > The previously discussed geometric methods are very good and straightforward for simple loadings.
- However, these methods are very tedious for complex loadings.
- In cases like this, an energy method is the preferred technique.
- Energy methods are based on the principle of conservation of energy.

Deflections

This principle states that the work done by all the external forces, U_e, acting on a structure is equal to the internal work or the strain energy, U_i, stored in the structure.

$$U_e = U_i$$

- > Both shear and moment contribute to the deformation of
- > Typically, the effects of bending on deformation are much more significant than the effects of shear

Deflections

- The procedure to compute a deflection component of a beam is like that for a truss
- ➤ Begin by applying a unit virtual load **Q** at the point where the deflection is to be computed
- Apply a unit couple at the point where the slope is to be computed

Deflections Let's examine the following beam and use virtual work to compute the displacement at point C P (real load) dx A x A x Q (virtual load) M - moment due to real loads P m - moment due to virtual loads Q

Deflections

The change in slope due to the P system is:

$$d\theta = \frac{M}{EI}dx$$

The external work done by the virtual force W_Q moving through the distance δ_P is:

$$W_Q = \sum Q \delta_P$$

The virtual strain energy dU_Q stored in each element as the moment m moves through angle $d\theta$ is:

$$dU_Q = md\theta$$

Deflections

To find the magnitude of dU_Q we must sum – or integrate – the

$$U_{Q} = \int_{1}^{x=L} m d\theta$$

The principle of conservation of energy states the external virtual work $W_{\rm Q}$ equals the virtual strain energy $U_{\rm Q}$:

$$\sum_{P} Q \delta_{P} = \int_{X=0}^{X=L} m d\theta$$

The $d\theta$ is known in terms of M, then the virtual work expression is:

$$\sum Q \delta_P = \int_{x=0}^{x=L} \frac{mM}{EI} dx$$

Deflections

Since the virtual load is a unit load the previous expression

$$\delta_{P} = \int_{x=0}^{x=L} \frac{mM}{EI} dx$$

If the external work is done by a virtual moment $M_{\rm Q}$ moving through a slope $\theta_{\rm P}$, then the virtual work equation is:

$$\theta_{P} = \int_{x=0}^{x=L} \frac{m_{\theta} M}{EI} dx$$

Where virtual moment m_{θ} is caused by a virtual couple

Deflections

Example: Determine the displacement and slope at point A on the beam $(I = 1,000 in^4)$ and $E = 29(10^3) ksi$.

The first step is to find the M expression for the real forces. Integrating the loading function, we can get the shear force equation:

$$V(x) = \int w(x)dx = -\int 2 dx = -2x + C_1$$

$$\begin{bmatrix} V(x=0) = 15k \\ V(x=15) = -15k \end{bmatrix}$$

$$V(x) = [15 - 2x]k$$

Deflections

Example: Determine the displacement and slope at point A on the beam $(I = 1,000 in^4 \text{ and } E = 29(10^3) ksi)$.

The next step is to find the *M* equation from the shear equation.

$$M(x) = \int V(x)dx = \int (15-2x)dx = 15x - x^2 + C_2$$

$$\begin{bmatrix} M(x=0) = 0 \\ M(x=15) = 0 \end{bmatrix}$$

$$M(x) = \left\lceil 15x - x^2 \right\rceil k \text{ ft.}$$

Deflections

Example: Determine the displacement and slope at point A on the beam $(I = 1,000 in^4 \text{ and } E = 29(10^3) ksi)$.

The next step is to find the virtual moment equation.

Deflections

Example: Determine the displacement and slope at point A on the beam ($I = 1,000 \ in^4$ and $E = 29(10^3) \ ksi$).

$$O^{+}\sum M_{L} = 0 = -1(10 \text{ ft.}) + R_{R}(15 \text{ ft.}) \implies R_{R} = \frac{2}{3} \implies R_{L} = \frac{1}{3}$$

Using the method of section, the virtual moment expressions are:

$$m(x) = \left[\frac{x}{3}\right]$$
 ft. $0 \le x \le 10$ $m(x) = \left[10 - \frac{2x}{3}\right]$ ft. $10 \le x \le 15$

Deflections

Example: Determine the displacement and slope at point A on the beam $(I = 1,000 \text{ in}^4 \text{ and } E = 29(10^3) \text{ ksi}).$

Since the moment due to the virtual load is discontinuous, we have to break the integration up into two parts.

$$\delta_A = \int_0^{10} \frac{mM}{EI} dx + \int_{10}^{15} \frac{mM}{EI} dx$$

Substituting the moment expression into the virtual work equation and integrating yields the following:

$$\delta_A = \int_0^{10} \frac{x(15x - x^2)}{3EI} dx + \int_{10}^{15} \frac{(30 - 2x)(15x - x^2)}{3EI} dx$$

Deflections

Example: Determine the displacement and slope at point A on the beam ($I = 1,000 \ in^4$ and $E = 29(10^3) \ ksi$).

$$\delta_A = \int_0^{10} \frac{x(15x - x^2)}{3EI} dx + \int_{10}^{15} \frac{(30 - 2x)(15x - x^2)}{3EI} dx$$

$$\delta_A = \frac{20x^3 - x^4}{12EI} \bigg|_0^{10} + \frac{900x^2 - 80x^3 + 2x^4}{12EI} \bigg|_{10}^{15}$$

$$\delta_A = \frac{\left(10,000 + 3,750\right)k\,ft^3}{12EI} = \frac{13,750k\,ft^3}{12EI}$$

$$\delta_A = \frac{13,750 \text{k ft}^3}{12(29,000 \text{ks}i)(1,000 \text{in}^4)} \cdot \frac{1,728 \text{in}^3}{\text{ft}^3}$$

= 0.068 in.

Deflections

Example: Determine the displacement and slope at point A on the beam $(I = 1,000 in^4)$ and $E = 29(10^3) ksi$.

1 ft.

A

A

$$R_L$$
 R_R

$$O^{+}\sum M_{L} = 0 = 1ft + R_{R}(15ft) \implies R_{R} = -\frac{1}{15} \implies R_{L} = \frac{1}{15}$$

Using the method of section, the virtual moment expressions are:

$$m_{\theta}(x) = \begin{bmatrix} x/15 \end{bmatrix}$$
 ft $0 \le x \le 10$ $m_{\theta}(x) = \begin{bmatrix} \frac{x-15}{15} \end{bmatrix}$ ft $10 \le x \le 15$

Deflections

Example: Determine the displacement and slope at point A on the beam $(I = 1,000 in^4 \text{ and } E = 29(10^3) ksi)$.

Since the moment due to the virtual couple is discontinuous, we have to break the integration into two parts.

$$\theta_{A} = \int_{0}^{10} \frac{m_{\theta} M}{EI} dx + \int_{10}^{15} \frac{m_{\theta} M}{EI} dx$$

Substituting the moment expression into the virtual work equation and integrating yields the following:

$$\theta_A = \int_0^{10} \frac{x(15x - x^2)}{15EI} dx + \int_{10}^{15} \frac{(x - 15)(15x - x^2)}{15EI} dx$$

Deflections

Example: Determine the displacement and slope at point A on the beam $(I = 1,000 in^4)$ and $E = 29(10^3) ksi$.

$$\theta_{A} = \int_{0}^{10} \frac{x(15x - x^{2})}{15EI} dx + \int_{10}^{15} \frac{(x - 15)(15x - x^{2})}{15EI} dx$$

$$\theta_A = \frac{20x^3 - x^4}{60EI} \bigg|_0^{10} + \frac{-450x^2 + 40x^3 - x^4}{60EI} \bigg|_{10}^{15}$$

$$\theta_A = \frac{\left(10,000 - 1,875\right)k \text{ ft}^2}{60EI} = \frac{8,125k \text{ ft}^2}{60EI}$$

$$\theta_{\rm A} = \frac{8,125 {\rm k}\,{\rm ft}^2}{60(29,000 ksi)(1,000 in^4)} \cdot \frac{144 {\rm in}^2}{{\rm ft}^2} \qquad = \boxed{0.0007 \ \textit{radians}}$$

Deflections

Example: Determine the displacement at point C on the beam shown below. Assume $I = 240 \text{ in}^4$ and $E = 29(10^3) \text{ ksi}$.

Notice that this beam must be divided into three sections to accommodate the real and virtual moment expressions

Deflections

Example: Determine the displacement at points D on the beam shown below. Assume $I = 400 \text{ in}^4$ and $E = 29(10^3) \text{ ksi}$.

Notice that this beam must be divided into three sections to accommodate the real and virtual moment expressions and the variation in the moment of inertia

