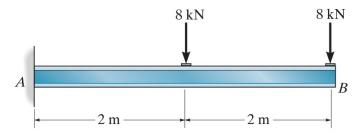
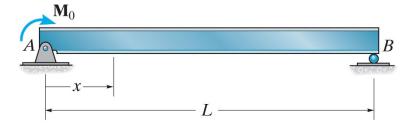
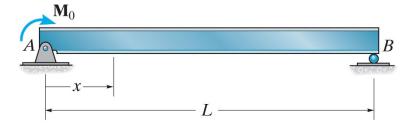

Example 7b-1: Determine the slope and the displacement at point B for the beam. Assume that E = 30,000 ksi and I = 800 in⁴.

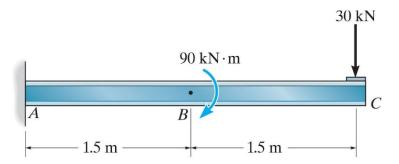

Example 7b-1: Determine the slope and the displacement at point B for the beam. Assume that E = 30,000 ksi and I = 800 in⁴.

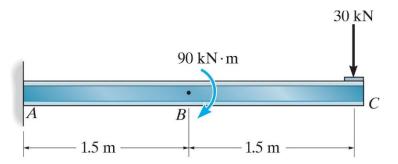
Example 7b-2: Determine the slope at B and the displacement at mid-span. Assume that E = 200 GPa and $I = 550(10^6)$ mm.

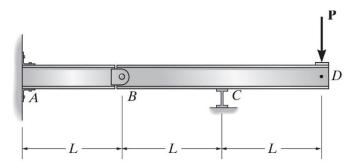
Example 7b-2: Determine the slope at B and the displacement at mid-span. Assume that E = 200 GPa and $I = 550(10^6)$ mm.

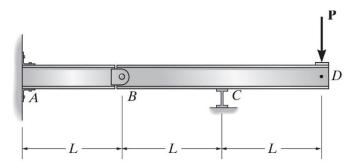

Example 7b-3: Determine the slope and the displacement at ${\it C}$ the beam. Assume that ${\it EI}$ is constant.


Example 7b-3: Determine the slope and the displacement at ${\it C}$ the beam. Assume that ${\it EI}$ is constant.


Example 7b-4: Use the conjugate beam method to determine the slope at point B and the displacement at x = L/2. Assume that EI is constant.


Example 7b-4: Use the conjugate beam method to determine the slope at point B and the displacement at x = L/2. Assume that EI is constant.


Example 7b-5: Use the conjugate beam method to determine the slope and displacement at point *C.* Assume that E = 200 GPa and $I = 300(10^6)$ mm.


Example 7b-5: Use the conjugate beam method to determine the slope and displacement at point *C.* Assume that E = 200 GPa and $I = 300(10^6)$ mm.

Example 7b-6: Use the conjugate beam method to determine the slope and displacement at point *D.* Assume that *EI* is constant.

Example 7b-6: Use the conjugate beam method to determine the slope and displacement at point *D.* Assume that *EI* is constant.

