Example 7b-1: Determine the slope and the displacement at point B for the beam. Assume that $E=30,000 \mathrm{ksi}$ and $I=800 \mathrm{in}^{4}$.

Example 7b-1: Determine the slope and the displacement at point B for the beam. Assume that $E=30,000 \mathrm{ksi}$ and $I=800 \mathrm{in}^{4}$.

Example 7b-2: Determine the slope at B and the displacement at mid-span. Assume that $E=200 \mathrm{GPa}$ and $I=550\left(10^{6}\right) \mathrm{mm}$.

Example 7b-2: Determine the slope at B and the displacement at mid-span. Assume that $E=200 \mathrm{GPa}$ and $I=550\left(10^{6}\right) \mathrm{mm}$.

Example 7b-3: Determine the slope and the displacement at C the beam. Assume that $E I$ is constant.

Example 7b-3: Determine the slope and the displacement at C the beam. Assume that $E I$ is constant.

Example 7b-4: Use the conjugate beam method to determine the slope at point B and the displacement at $x=L / 2$. Assume that $E I$ is constant.

Example 7b-4: Use the conjugate beam method to determine the slope at point B and the displacement at $x=L / 2$. Assume that $E I$ is constant.

Example 7b-5: Use the conjugate beam method to determine the slope and displacement at point C. Assume that $E=200 \mathrm{GPa}$ and $I=300\left(10^{6}\right) \mathrm{mm}$.

Example 7b-5: Use the conjugate beam method to determine the slope and displacement at point C. Assume that $E=200 \mathrm{GPa}$ and $I=300\left(10^{6}\right) \mathrm{mm}$.

Example 7b-6: Use the conjugate beam method to determine the slope and displacement at point D. Assume that $E I$ is constant.

Example 7b-6: Use the conjugate beam method to determine the slope and displacement at point D. Assume that $E I$ is constant.

