Deflections

Conjugate-Beam Method

- The development of the conjugate beam method has been attributed to several structural engineers.
- Many credit Heinrich Müller-Breslau (1851-1925) for developing this method in 1865, while others say it was developed by Christian Otto Mohr (1835-1918).

Deflections

- Heinrich Franz Bernhard Müller was born in Wroclaw (Breslau) on 13 May 1851.
- In 1875, he opened a civil engineer's office in Berlin. Around this time, he decided to add the name of his hometown to his surname, becoming known as Müller-Breslau

He founded the so-called "Berlin School" of structural theory.

Deflections

Christian Otto Mohr was an enthusiast for graphical tools and developed the method for visually representing stress in 3D, known as Mohr's Circle.

- He also developed methods for truss displacements and for analyzing statically indeterminate structures.
- He founded the so-called "Dresden School" of applied mechanics and disagreed with Müller-Breslau throughout their careers.

Deflections

Conjugate-Beam Method

- A conjugate beam is an imaginary beam with the same dimensions (length) as the original beam.
- The load at any point on the conjugate beam is equal to the bending moment *M* at that point divided by *EI*.
- The conjugate-beam method is an engineering method to derive the slope and displacement of a beam.
- This method relies only on the principles of statics, so its application will be more familiar.

Deflections The method is based on the similarity between the relationships for loading and shear, as well as shear and moment. $\frac{dV}{dx} = W(x) \qquad \frac{dM}{dx} = V \implies \frac{d^2M}{dx^2} = W$ $V = \int W(x)dx \qquad M = \iint W(x)dx \ dx$

Just as before, if you replace w with the term M/EI, the expressions for bending moment and displacement are identical

Deflections

Therefore, the two theorems related to the conjugate beam method are:

- Theorem 1: The slope at a point in the actual beam equals the shear at the corresponding point in the conjugate beam.
- Theorem 2: The displacement of a point in the real beam is equal to the moment at the corresponding point in the conjugate beam.

Deflections	
Conjugate-Beam Supports	
Real Support	Conjugate Support
$\theta_{L} = \theta_{R}$ Interior support $\Delta = 0 \qquad \theta_{L} = \theta_{R} \neq 0$	$\begin{array}{c c} V_{L} & & V_{R} \\ \hline & & \\ Hinge \\ M = 0 & V_{L} = V_{R} \neq 0 \end{array}$
θ_{L} θ_{R} Hinge $\Delta \neq 0$ θ_{L} and θ_{R} may have different values	$\begin{array}{c c} V_L & M & V_R \\ \hline \\ Interior roller \\ M \neq 0 & V_L \text{ and } V_R \text{ may have } \\ different values \end{array}$

> As a rule, statically determinant real beams have statically determinant conjugate beams, and statically indeterminate beams become

However, the *M/EI* loading may provide the necessary "equilibrium" to stabilize the conjugate beam.

unstable conjugate beams.

Deflections

Procedure for analysis

- Construct the conjugate beam with the *M/EI* loading. Remember that when the *M/EI* diagram is positive, the loading is *upward*, and when it is negative, it is *downward*.
- Use the equilibrium equations to solve for the reactions of the conjugate beam. This may be challenging if the moment diagram is complex.
- Solve for the shear and moment at the point where the slope and displacement are desired. If the values are positive, the slope is counterclockwise, and the displacement is upward.

