Deflections

Conjugate-Beam Method

> The development of the conjugate beam method has been attributed to several structural engineers.
> Many credit Heinrich Müller-Breslau (18511925) for developing this method in 1865 , while others say it was developed by Christian Otto Mohr (1835-1918).

Deflections

> Christian Otto Mohr was an enthusiast for graphical tools and developed the method for visually representing stress in 3D, known as Mohr's Circle.
$>$ He also developed methods for truss displacements and for analyzing statically indeterminate structures.

$>$ He founded the so-called "Dresden School" of applied mechanics and disagreed with MüllerBreslau throughout their careers

Deflections

> Heinrich Franz Bernhard Müller was born in Wroclaw (Breslau) on 13 May 1851.
> In 1875, he opened a civil engineer's office in Berlin. Around this time, he decided to add the name of his hometown to his surname, becoming known as Müller-Breslau
> He founded the so-called "Berlin School" of structural theory.

Deflections

Conjugate-Beam Method

$>$ A conjugate beam is an imaginary beam with the same dimensions (length) as the original beam.
$>$ The load at any point on the conjugate beam is equal to the bending moment \boldsymbol{M} at that point divided by El.
> The conjugate-beam method is an engineering method to derive the slope and displacement of a beam.
$>$ This method relies only on the principles of statics, so its application will be more familiar.

Deflections

The method is based on the similarity between the relationships for loading and shear, as well as shear and moment.

$$
\begin{array}{ll}
\frac{d V}{d x}=w(x) & \frac{d M}{d x}=V \Rightarrow \frac{d^{2} M}{d x^{2}}=w \\
V=\int w(x) d x & M=\iint w(x) d x d x
\end{array}
$$

Deflections

$>$ The previous expressions relate the internal shear and moment to the applied load.
$>$ The slope and deflection of the elastic curve are related to the internal moment by the following expressions

$$
\begin{array}{ll}
\frac{d \theta}{d x}=\frac{M}{E I} & \frac{d^{2} y}{d x^{2}}=\frac{M}{E I} \\
\theta=\int \frac{M}{E I} d x & y=\iint \frac{M}{E I} d x d x
\end{array}
$$

Deflections

$>$ Let's compare expressions for shear, \boldsymbol{V}, and the slope, θ

$$
\frac{d V}{d x}=w \quad \frac{d \theta}{d x}=\frac{M}{E I}
$$

- What do you see?
$>$ If you replace \boldsymbol{w} with the term $M / E I$, the expressions for shear force and slope are identical

Deflections

Let's compare expressions for bending moment, \boldsymbol{M}, and the displacement, \boldsymbol{y}

$$
\frac{d^{2} M}{d x^{2}}=w \quad \frac{d^{2} y}{d x^{2}}=\frac{M}{E I}
$$

> What do you see?
$>$ Just as before, if you replace \boldsymbol{w} with the term M/EI, the expressions for bending moment and displacement are identical

Deflections

We will use this relationship to our advantage by constructing a beam of the same length as the real beam, referred to as the conjugate beam.
$>$ The conjugate beam is loaded with the M/EI diagram, simulating the external load w.

Deflections

Therefore, the two theorems related to the conjugate beam method are:
> Theorem 1: The slope at a point in the actual beam equals the shear at the corresponding point in the conjugate beam.
> Theorem 2: The displacement of a point in the real beam is equal to the moment at the corresponding point in the conjugate beam.

Deflections

Conjugate-Beam Supports

When the conjugate beam is drawn, it is important that the shear and moment developed in it correspond to the slope and displacement conditions in the real beam.

Real Support	Conjugate Support
Pin or roller	
$\Delta=0 \quad \theta \neq 0$	$M=0 \quad V \neq 0$

Deflections	
Conjugate-Beam Supports	
Real Support	Conjugate Support
$\sum_{\substack{\text { friee end } \\ \Delta \neq 0}}$	${ }^{M} C \prod_{\substack{\text { Fixed end } \\ M \neq 0 \\ v \neq 0}}^{v}$
$\square_{\substack{\text { Fixedend } \\ \Delta=0}}$	$\xlongequal[\substack{\text { Friee end } \\ M=0}]{ }$

Deflections

> As a rule, statically determinant real beams have statically determinant conjugate beams, and statically indeterminate beams become unstable conjugate beams.
> However, the M/EI loading may provide the necessary "equilibrium" to stabilize the conjugate beam.

Deflections

Conjugate-Beam Supports

Real Support	Conjugate Support
Interior support $\Delta=0 \quad \theta_{L}=\theta_{R} \neq 0$	Hinge $M=0 \quad V_{L}=V_{R} \neq 0$
	Interior roller
$\begin{array}{ll} \Delta \neq 0 & \begin{array}{l} \theta_{\mathrm{L}} \text { and } \theta_{\mathrm{R}} \text { may have } \\ \text { different values } \end{array} \end{array}$	$\mathrm{M} \neq 0 \quad V_{\mathrm{L}}$ and V_{R} may have different values

Deflections

Procedure for analysis

1. Construct the conjugate beam with the $M / E I$ loading. Remember that when the M/EI diagram is positive, the loading is upward, and when it is negative, it is downward.
2. Use the equilibrium equations to solve for the reactions of the conjugate beam.
This may be challenging if the moment diagram is complex.
3. Solve for the shear and moment at the point where the slope and displacement are desired.
If the values are positive, the slope is counterclockwise, and the displacement is upward.

Deflections

Draw the conjugate beam, including supports, for the following beams

Deflections

Draw the conjugate beam, including supports, for the following beams

Conjugate beam and supports

Deflections

Example: Determine the slope and the displacement at point C for the following beam. Assume that $E=30,000 \mathrm{ksi}$ and $I=300 \mathrm{in}^{4}$.

$\mathrm{U}^{+} \sum M_{A}=0=\frac{1}{2}\left(\frac{50 \mathrm{kft}}{E I}\right)(20 \mathrm{ft}).(10 \mathrm{ft})+.B_{y}(20 \mathrm{ft}$.
$B_{y}=-\frac{250 \mathrm{kft}^{2}}{E I}$
${ }^{+\uparrow} \sum F_{y}=0=\frac{1}{2}\left(\frac{50 \mathrm{kft}}{E I}\right)(20 \mathrm{ft})+.B_{y}+A_{y}$
$A_{y}=-\frac{250 \mathrm{kft}^{2}}{E I}$

Deflections

Example: Determine the slope and the displacement at point C for the following beam. Assume that $E=30,000 \mathrm{ksi}$ and $I=300 \mathrm{in}^{4}$.

$$
+\uparrow \sum F_{y}=0=\frac{1}{2}\left(\frac{50 \mathrm{kft}}{E I}\right)(10 \mathrm{ft} .)-\left(\frac{250 \mathrm{kft}^{2}}{E I}\right)+V_{c} \quad V_{c}=0
$$

Deflections

Example: Determine the slope and the displacement at point C for the following beam. Assume that $E=30,000 \mathrm{ksi}$ and $I=300 \mathrm{in}^{4}$.

Construct the conjugate beam and apply the $M / E I$ diagram as loading

Remember that a positive (+) bending moment is a positive $(+)$ loading on the conjugate beam.

Deflections

Example: Determine the slope and the displacement at point C for the following beam. Assume that $E=30,000 \mathrm{ksi}$ and $I=300 \mathrm{in}^{4}$.

$v^{+} \sum M_{C}=0=-M_{C}+\frac{1}{2}\left(\frac{50 \mathrm{kft}}{E I}\right)(10 \mathrm{ft}).\left(\frac{10 \mathrm{ft}}{3}\right)-\left(\frac{250 \mathrm{kft}^{2}}{E I}\right)(10 \mathrm{ft}$.
$M_{C}=-\frac{1,666.6 \mathrm{kft}^{3}}{E I}=-\frac{1,666.6 \mathrm{kft}^{3}}{(30,000 \mathrm{ksi})\left(300 \mathrm{in}^{4}\right)} \cdot \frac{1,728 \mathrm{in}^{3}}{\mathrm{ft}^{3}}=-0.32 \mathrm{in}$.

Deflections

Example: Determine the slope and the displacement at point C for the following beam. Assume that $E=30,000 \mathrm{ksi}$ and $I=300 \mathrm{in}^{4}$.

> Therefore, the displacement of the beam at point C is equal to the moment at point C on the conjugate beam, and the slope is equal to the shear in the conjugate beam.
> In this problem, the displacement at point C is -0.32 in., and the slope is zero.

Deflections

Example: Determine the maximum displacement at the mid-span of the following beam. Assume that $E=30,000 \mathrm{ksi}$ and $I=800 \mathrm{in}^{4}$.

Deflections

Deflections

Example: Determine the slope at A and the displacement at mid-span. Assume that $E I$ is a constant.
E for the following beam. Assume that $E=29,000 \mathrm{ksi}$ and $I_{\mathrm{AB}}=I_{\mathrm{DE}}=$

Are there any disadvantages to the conjugate beam method for uniform or high-order loading functions?

End of Defections - Part 2

Any questions?

