Deflections

Question: What are Structural Deflections?

- Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions.
- It is as important for the designer to determine deflections and strains as it is to know the stresses caused by loads.

Deflections

- In this section we will discuss how to calculate the deflections of elastic structures using both geometric and energy methods.
- A geometric method uses the strain of an elastic structure to determine the deflection.
- Energy methods are based on the principle of conservation of energy.

Deflections

- In general, a maximum deflection criteria for structures is frequently used.
- These limit states are mathematic expressed as:

$$
\Delta_{\text {liveloads }}=\frac{L}{360} \quad \Delta_{\text {totalload }}=\frac{L}{240}
$$

Deflections

Deflection Diagrams and the Elastic Curve

- The ability to determine the deflection of a structure is very important.
- Deflection is caused by many sources, such as, loads, temperature, construction error, and settlements.
- It is important to include the calculation of deflections into the design procedure to prevent structural damage to secondary structures (concrete or plaster walls or roofs) or to solve indeterminate problems.

Deflections

Deflection Diagrams and the Elastic Curve

- Usually, before the slope and deflection are calculated, it is important to sketch the shape of the structure when loaded.
- To do this, we need to know how different connections rotate, θ, and deflect, Δ, as a response to loading.

Pin or roller support $\Delta=0$

Deflections

Deflection Diagrams and the Elastic Curve

- Usually, before the slope and deflection are calculated, it is important to sketch the shape of the structure when loaded.
- To do this, we need to know how different connections rotate, θ, and deflect, Δ, as a response to loading

Fixed support $\Delta=0$ and $\theta=0$

Deflections

Deflection Diagrams and the Elastic Curve

- Consider the rotation, θ, and deflection, Δ, of connections in frames

Fixed-connected joint - since
Fixed-connected joint - since slope of the each member is the
same

Pin-connected joint - the pinned joint may rotate which pinned joint may rotate which
results in different slopes for each member same

Deflections

Deflection Diagrams and the Elastic Curve

How will this beam deflect?

Deflections

Deflection Diagrams and the Elastic Curve

How will this frame deflect?

Deflections

Elastic Beam Theory

In this section, we will derive the relationship between the internal moment and the deflected shape. Consider a straight elastic beam deformed by a set of applied loads.

Deflections

Elastic Beam Theory

From geometry of the triangular segment $A B$ we can write:

$\rho d \theta=d s$

Deflections

Elastic Beam Theory

Dividing each side of the previous equation by $d s$ and rearranging the terms gives:

$$
\rho d \theta=d s \Rightarrow \frac{d \theta}{d s}=\frac{1}{\rho}
$$

Since $d \theta / d s$ represents the change in slope per
unit length of distance along the curve, this term unit length of distance along the curve, this term is called the curvature. Since slope are small in actual beams, $d s \approx d x$, therefore:

$$
\frac{d \theta}{d x}=\frac{1}{\rho}
$$

Deflections

Elastic Beam Theory

Differentiation both side of the first equation gives:

$$
\theta=\frac{d y}{d x} \Rightarrow \frac{d \theta}{d x}=\frac{d^{2} y}{d x^{2}} \quad \frac{d \theta}{d x}=\frac{1}{\rho}
$$

Deflections

Elastic Beam Theory

The change in length of the top fiber $d l$ in terms of $d \theta$ and the distance c from the neutral axis is.

$$
d l=d \theta c
$$

Deflections

Elastic Beam Theory

Combining the previous equations to solve for strain ε :

$$
d l=d \theta c \quad \varepsilon=\frac{d l}{d x} \Rightarrow \quad \varepsilon=\frac{d \theta}{d x} c
$$

Deflections

Elastic Beam Theory

Using the equation relating curvature and displacement we get:

$$
\frac{d \theta}{d x}=\frac{d^{2} y}{d x^{2}} \Rightarrow \varepsilon=\frac{d \theta}{d x} c \Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{\varepsilon}{c}
$$

If the behavior is elastic, the flexural stress, s, can be related to the strain, e, at the top fibers by Hooke's Law, $\sigma=E \varepsilon$

$$
\frac{d^{2} y}{d x^{2}}=\frac{\sigma}{E c}
$$

Deflections

Elastic Beam Theory

For elastic behavior the relationship between flexural stress at the top of the beam and the moment acting on the cross-section is:

$$
\sigma=\frac{M c}{l}
$$

Substituting the value of s in the equation on the last page, gives the basic differential equation of the displacement of an elastic beam:

$$
\frac{d^{2} y}{d x^{2}}=\frac{M}{E l} \quad y=\iint \frac{M}{E l} d x d x
$$

Deflections

Example: Determine the equations for slope and displacement in the following beam.

$$
y=\iint \frac{M}{E l} d x d x
$$

First, find the reactions; and second, write the equation for moment as a function of x

Deflections

Elastic Beam Theory

- How can we use the basic equation for elastic beams to solve for the displacement?

$$
y=\iint \frac{M}{E l} d x d x
$$

- If we can write a continuous function for the moment over the beam we can integrate the function and find the displacement as a function of \boldsymbol{x}.
- This method is called direct integration

Deflections

Find the reactions in the cantilever beam

Deflections

Write the equation for bending moment in the beam

$U^{+} \sum M_{\text {cut }}=0=M-P x+P L \quad \Rightarrow \quad M=P(x-L)$

Deflections

Integrate the moment equation to determine the slope

$$
M=P(x-L)
$$

$$
\theta=\int \frac{M}{E l} d x=\int \frac{P(x-L)}{E l} d x
$$

$$
=\frac{P}{E I}\left(\frac{x^{2}}{2}-L x\right)+C_{1} \quad \theta(x=0)=0
$$

$$
\theta=\frac{P}{E I}\left(\frac{x^{2}}{2}-L x\right) \quad \theta(x=L)=-\frac{P L^{2}}{2 E I}
$$

Deflections

Integrate the slope equation to determine the displacement

$$
\begin{aligned}
y & =\int \theta d x \quad=\frac{P}{E I} \int\left(\frac{x^{2}}{2}-L x\right) d x \\
& =\frac{P}{E I}\left(\frac{x^{3}}{6}-\frac{L x^{2}}{2}\right)+C_{2} \quad y(x=0)=0 \\
y & =\frac{P}{E I}\left(\frac{x^{3}}{6}-\frac{L x^{2}}{2}\right) \quad y(x=L)=-\frac{P L^{3}}{3 E I}
\end{aligned}
$$

Deflections

Example: Determine the equations for slope and displacement in the following beam.

Deflections

Example: Determine the equations for slope and displacement in the following beam.

$$
y=\iint \frac{M}{E l} d x d x
$$

First, find the reactions; and second, write the equation for moment as a function of x

Deflections

Example: Determine the equations for slope and displacement in the following beam.

End of Defections - Part 1

