2

Shear and Moment Functions

- Beams are structural members that carry lateral loading (perpendicular to the bending axis).
- To design a beam, detailed knowledge of the variation of the axial force, *A*, shear force, *V*, and the bending moment, *M*, throughout the member is required.

Shear and Moment Functions

> Typically, axial force is not considered since:

- 1. in most cases, the loading is perpendicular to the beam and
- 2. the beam's resistance to shear and bending moment is more critical.
- The variation of the shear force and bending moment along the beam may be written as a function of the position, x.

1

Shear and Moment Functions Consider the x_1

8

Shear and Moment Functions

Procedure for analysis - the variation of shear force and bending moment in a member is determined using the *method of sections*:

1. Determine the support reactions for the structure.

13

Shear and Moment Functions

Procedure for analysis - the variation of shear force and bending moment in a member is determined using the *method of sections*:

 Draw the corresponding free-body diagram of one of the "cut" segments indicating the unknown reactions V and M acting in their positive (+) directions

15

Shear and Moment Functions

Procedure for analysis - the variation of shear force and bending moment in a member is determined using the *method of sections*:

2. Keeping all external loadings in their exact locations, make an imaginary "cut" through the member at a point within the region where the shear and moment functions are desired.

14

19

21

22

