

Support Idealizations Smooth pin

.0

Loading Idealizations Tributary Loadings—When frames or other structural members are analyzed, it is necessary to determine how walls, floors, or roofs transmit load to the element under consideration. A one-way system is typically a slab or plate structure

- A one-way system is typically a slab or plate structure supported along two opposite edges
 Evemplose a slab of reinforced concrete with steel in
- > Examples: a slab of reinforced concrete with steel in one direction or with steel in both directions with a span ratio $L_2/L_1 > 2$
- A two-way system is typically defined by a Span ratio L₂/L₁ < 2 or if all edges are supported</p>

Loading Idealizations 4 kN/m 2 m 1 2 3 m 2 m 3 m 2 m 4 kN/m 2 m 2 m 2 mThe dead load on the roof is 100 lb/ft² -2 m 2 m

Determinacy and Stability

57

63

69

Application of the Equations of Equilibrium

Free-Body Diagram

- Disassemble the structure and draw a free-body diagram of each member.
- Supplementing a member free-body's diagram with a free-body diagram of the entire structure may be necessary.
- Remember that reactive forces common on two members act with equal magnitudes but opposite directions on their free bodies.
- Identify any two-force members

Application of the Equations of Equilibrium Free-Body Diagram - disassemble the structure and draw a free-body diagram of each member. Equations of Equilibrium - The total number of unknowns should be equal to the number of equilibrium equations

70

Application of the Equations of Equilibrium

Equations of Equilibrium

- > Check if the structure is determinate and stable
- Attempt to apply the moment equation ΣM = 0 at a point that lies at the intersection of the lines of action of as many forces as possible
- When applying ΣF_x = 0 and ΣF_y = 0, orient the x and y axes along lines that will provide the simplest reduction of forces into their x and y components
- If the solution of the equilibrium equations yields a negative value for an unknown, it indicates that the direction is opposite of that assumed

74

