Conjugate-Beam Method

- The development of the conjugate beam method has been attributed to several structural engineers.
- Many credit Heinrich Müller-Breslau (1851-1925) with the development of this method, while others, say the method was developed by Christian Otto Mohr (1835-1918).

Deflections - Conjugate Beam

- Heinrich Franz Bernhard Müller was born in Wroclaw (Breslau) on 13 May 1851.
- In 1875 he opened a civil engineer's office in Berlin. Around this time he decided to add the name of his hometown to his surname, becoming known as Müller-Breslau.
- He founded the so-called "Berlin School" of structural theory.

Deflections

- Christian Otto Mohr was an enthusiast for graphical tools and developed the method for visually representing stress in 3D known as Mohr's Circle.
- He also developed methods for truss displacements and for analyzing statically indeterminate structures.
- He founded the so-called "Dresden School" of applied mechanics and has differences of opinion with Müller-Breslau throughout their careers.

The method is based on the similarity between the relationships for loading and shear, and shear and moment.

\[\frac{dV}{dx} = w(x) \quad \frac{dM}{dx} = V \quad \Rightarrow \frac{d^2M}{dx^2} = w \]

\[V = \int w(x)dx \quad M = \int \int w(x)dx \, dx \]

Deflections

- The previous expressions relate the internal shear and moment to the applied load.
- The slope and deflection of the elastic curve are related to the internal moment by the following expressions

\[\frac{d\theta}{dx} = \frac{M}{Ei} \quad \frac{d^2y}{dx^2} = \frac{M}{Ei} \]

\[\theta = \int \frac{M}{Ei} \, dx \quad y = \int \int \frac{M}{Ei} \, dx \, dx \]

Deflections

- Let's compare expressions for shear, \(V \), and the slope, \(\theta \)

\[\frac{dV}{dx} = w \quad \frac{d\theta}{dx} = \frac{M}{Ei} \]

- What do you see?
- If you replace \(w \) with the term \(\frac{M}{Ei} \) the expressions for shear force and slope are identical
Let’s compare expressions for bending moment, M, and the displacement, y

$$\frac{d^2 M}{dx^2} = w \quad \frac{d^2 y}{dx^2} = \frac{M}{EI}$$

What do you see?
Just as before, if you replace w with the term M/EI the expressions for bending moment and displacement are identical.

We will use this relationship to our advantage by constructing a beam with the same length as the real beam referred to as the **conjugate beam**.

The conjugate beam is loaded with the M/EI diagram, simulating the external load w.

Therefore, the two theorems related to the conjugate beam method are:

- **Theorem 1**: The slope at a point in the real beam is equal to the shear at the corresponding point in the conjugate beam.
- **Theorem 2**: The displacement of a point in the real beam is equal to the moment at the corresponding point in the conjugate beam.

When the conjugate beam is drawn, it is important that the shear and moment developed in the conjugate beam correspond to the slope and displacement conditions in the real beam.

<table>
<thead>
<tr>
<th>Real Support</th>
<th>Conjugate Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin or roller</td>
<td>Pin or roller</td>
</tr>
<tr>
<td>$\Delta = 0$</td>
<td>$M = 0$</td>
</tr>
<tr>
<td>$\theta = 0$</td>
<td>$V = 0$</td>
</tr>
</tbody>
</table>
Deflections

Conjugate-Beam Supports

<table>
<thead>
<tr>
<th>Real Support</th>
<th>Conjugate Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_i</td>
<td>V_L, V_R</td>
</tr>
<tr>
<td>Interior support</td>
<td>$M = 0$ $V_L = V_R = 0$</td>
</tr>
<tr>
<td>$\Delta = 0$ $\theta_i = \theta_i = 0$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>θ_i</th>
<th>V_L, V_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinge</td>
<td>$M = 0$ $V_L = V_R = 0$</td>
</tr>
<tr>
<td>$\Delta = 0$ θ_i and θ_i may have different values</td>
<td></td>
</tr>
</tbody>
</table>

Interior roller

θ_i and θ_i may have different values

- As a rule, statically determinant real beams have statically determinant conjugate beams and statically indeterminate beams become unstable conjugate beams.
- However, the M/EI loading may provide the necessary "equilibrium" to hold the conjugate beam stable.

Deflections

Procedure for analysis

1. Construct the conjugate beam with the M/EI loading. Remember when the M/EI diagram is positive the loading is upward and when the M/EI diagram is negative the loading is downward.
2. Use the equations of equilibrium to solve for the reactions of the conjugate beam. This may be difficult if the moment diagram is complex.
3. Solve for the shear and moment at the point or points where the slope and displacement are desired. If the values are positive, the slope is counterclockwise and the displacement is upward.

Deflections

Draw the conjugate beam, including supports, for the following beams

Conjugate beam and supports

Deflections

Draw the conjugate beam, including supports, for the following beams

Conjugate beam and supports
Example: Determine the slope and the displacement at point C for the following beam. Assume that $E = 30,000$ ksi and $I = 300$ in4.

Construct the conjugate beam and apply the M/EI diagram as loading.

Remember positive (+) bending moment is a positive (+) loading on the conjugate beam.

Example: Determine the slope and the displacement at point C for the following beam. Assume that $E = 30,000$ ksi and $I = 300$ in4.

- Therefore, the displacement of the beam at point C is equal to the moment at point C on the conjugate beam and the slope is equal to the shear in the conjugate beam.
- In this problem, the displacement at point C is -0.32 in and the slope is zero.
Deflections

Example: Determine the maximum displacement at the mid-span of the following beam. Assume that $E = 30,000$ ksi and $I = 800$ in4.

![Beam with loads](image)

9 ft

Deflections

Example: Determine the slope at point B and the displacement at point E for the following beam. Assume that $E = 29,000$ ksi and $I_{AB} = I_{DE} = 400$ in4, and $I_{BD} = 800$ in4.

![Beam with loads](image)

10 ft

Deflections

Example: Determine the slope at A and the displacement at mid-span.

![Beam with loads](image)

$A L B$

End of Deflections – Part 2

Any questions?

Are there any disadvantages to the conjugate beam method for uniform or high-order loading functions?