

MEMPHIS

Distributed Loads

- Up to this point, all the forces we have considered have been point loads
- Single forces which are represented by a vector - Not all loading conditions are of that type

MEMPHIS

Distributed Loads

o Consider how your ears feel as you go deeper into a swimming pool.

- The deeper you go, the greater the pressure on your ears.

Distributed Loads

- If we consider how this pressure acts on the walls of the pool, we would have to consider a force (generated by the pressure) that was small at the top and increased as we went down.

Distributed Loads

- This is known as a distributed force or a distributed load.
- It is represented by a series of vectors which are connected at their tails.

Distributed Loads

o One type of distributed load is a uniformly distributed load

MEMPHIS

-
 Distributed Loads

- This load has the same intensity along its application.
o The intensity is given in terms of Force/Length

MEMPHIS.

-

Distributed Loads

- The total magnitude of this load is the area under the loading diagram.
o So here it would be the load intensity time the beam length.

MEMPHIS

- - Distributed Loads
- If, for analysis purposes, we wanted to replace this distributed load with a point load, the location of the point load would be in the center of the rectangle.

MEMPHIS.

Distributed Loads

- We do this to solve for reactions.
- For a uniform load, the magnitude of the equivalent point load is equal to the area of the loading diagram and the location of the point load is at the center of the loading diagram.

MEMP

-
 Distributed Loads

- A second type of loading we often encounter is a triangular load

Triangular Load
11

MEMPHIS

-

Distributed Loads

- A triangular load has an intensity of 0 at one end and increases to some maximum at the other end.

Triangular Load

The miveriris

...
 Distributed Loads

o You will often see the intensity represented with the letter w.

Triangular Load

Distributed Loads

- The magnitude of an equivalent point load will again be the area under the loading diagram.

Triangular Load

The miveriris

- - Distributed Loads

o For a triangle, this would be $1 / 2$ the base times the maximum intensity.

Triangular Load

MEMPHIS

-

Distributed Loads

- The location of the equivalent point load will be $2 / 3$ of the distance from the smallest value in the loading diagram.

The miveriris

...
 Distributed Loads

o There are other types of loading diagrams but these will be sufficient for now.

Triangular Load
Monday, November 5, 2012

MEMPHIS

..

Distributed Loads

o You may see a diagram that appears to be a trapezoidal loading.

MEMP

Distributed Loads

o In this case, we can divide the loading diagram into two parts, one a rectangular load and the other a triangular load.

Distributed Loads

o Now you have two loads that you already have the rules for.

Resolution of trapezoidal load into rectangular and triangular loads

MEMPHIS.

- - Distributed Loads

- Take care to note that the maximum intensity of the triangular load is now reduced by the magnitude of the rectangular load.

Resolution of trapezoidal load into

MEMPHIS

-

Example Problem

o Given: The loading and support as shown o Required: Reactions at the supports

MEMEMPHIS.

Example Problem

- Isolate the selected system from all connections
- Start with the pin at A

23
Distrubuted Loads
Monday, November 5, 2012

MEMPHIS

Example Problem

- We have a pin, so we have an x and a y component of the reaction and we will assume that both of them are +

Example Problem

- Now we can remove the roller support at B recognizing that the direction of the reaction is $+y$

25

MEMEMPHIS.

Example Problem

o We now have all the reactions identified and can proceed with the analysis

Example Problem

o The best idea is to now convert all distributed loads into point loads

Example Problem

o Break the load into a rectangular load and a triangular load

The minesiris.

Example Problem

- For the rectangular load

Example Problem

- For the triangular load

MEMEMPHIS.

Example Problem

- We have three unknowns, $\mathrm{A}_{\mathrm{y}}, \mathrm{A}_{\mathrm{x}}$, and B_{y} - Luckily we have three equilibrium constraints to solve for them
$\sum^{f} \xi=0$
$\sum F_{y}=0$
$\sum M=0$
31
Distrubuted Loads

Monday, November 5, 2012

MEMPHIS.

Example Problem

- Summing the moments about A to solve for B_{y}.

$$
\begin{aligned}
\sum F_{x} & =0 \\
\sum F_{y} & =0 \\
\sum M & =0
\end{aligned}
$$

The minesiris.

Example Problem

- Writing the expression for the sum of the moments around A

$$
\sum M=0=-(4.5 f t)(900 l b)-(7.67 f t)(200 l b)+(9 f t)\left(B_{y}\right)
$$

33

Example Problem

- Isolating and solving for B_{y}

$$
\frac{(4.5 f t)(900 l b)+(7.67 f t)(200 l b)}{(9 f t)}=B_{y}
$$

$620.37 l b=B_{y}$

Example Problem

o Sum of the forces in the y-direction

$$
\begin{aligned}
& \sum_{y} F_{y}=0=A_{y}-900 \mathrm{lb}-200 \mathrm{lb}+B_{y} \\
& 0=A_{y}-900 \mathrm{lb}-200 \mathrm{lb}+620.37 \mathrm{lb} \\
& A_{y}=+900 \mathrm{lb}+200 \mathrm{lb}-620.37 \mathrm{lb} \\
& A_{y}=479.63 \mathrm{lb} \\
& \\
& { }_{35}
\end{aligned}
$$

MEMEMPHIS.

Example Problem

- Since the magnitude of our solution came out positive, we assumed the correct direction

MEMPHIS.

Example Problem

o Now our final constraint condition

$$
\begin{array}{ll}
\sum F_{x}=0=A_{x} \\
0=A_{x} \\
A_{x}=0 l b
\end{array}
$$

MEMEMPHIS.

Example Problem

- So our complete solution to the problem is

$$
\begin{aligned}
& A_{x}=0 l b \\
& A_{y}=479.63 l b \\
& B_{y}=620.37 l b
\end{aligned}
$$

MEN

F4-37. Determine the resultant force and specify where it acts on the beam measured from A.

F4-37

39
Distrubuted Loads
Monday, November 5, 2012

MEMPHIS.

F4-38. Determine the resultant force and specify where it acts on the beam measured from A.

F4-38

MEMPHIS.

-r

F4-39. Determine the resultant force and specify where it acts on the beam measured from A.

F4-39
o Problem 4-145

- Problem 4-148
o Problem 4-153

