

MHEMVEPSTYYIS

Radius of Gyration

- This actually sounds like some sort of rule for separation on a dance floor.
o It actually is just a property of a shape and is used in the analysis of how some shapes act in different conditions.

MEMP

Radius of Gyration

- The radius of gyration, k, is the square root of the ratio of the moment of inertia to the area

$$
\begin{aligned}
& k_{x}=\sqrt{\frac{I_{x}}{A}} \\
& k_{y}=\sqrt{\frac{I_{y}}{A}} \\
& k_{O}=\sqrt{\frac{J_{O}}{A}}=\sqrt{\frac{I_{x}+I_{y}}{A}}
\end{aligned}
$$

MEMPHIS

Parallel Axis Theorem

- If you know the moment of inertia about a centroidal axis of a figure, you can calculate the moment of inertia about any parallel axis to the centroidal axis using a simple formula

$$
\begin{aligned}
& I_{y}=I_{\bar{y}}+A x^{2} \\
& I_{x}=I_{\bar{x}}+A y^{2}
\end{aligned}
$$

MEMPHIS

\bullet Parallel Axis Theorem
o Since we usually use the bar over the centroidal axis, the moment of inertia about a centroidal axis also uses the bar over the axis designation

$$
\begin{aligned}
& I_{y}=I_{\bar{y}}+A x^{2} \\
& I_{x}=I_{\bar{x}}+A y^{2}
\end{aligned}
$$

MEMPHIS

Parallel Axis Theorem

o If you look carefully at the expression, you should notice that the moment of inertia about a centroidal axis will always be the minimum moment of inertia about any axis that is parallel to the centroidal axis.

$$
\begin{aligned}
& I_{y}=I_{\bar{y}}+A x^{2} \\
& I_{x}=I_{\bar{x}}+A y^{2}
\end{aligned}
$$

MEMPHIS

- Parallel Axis Theorem

- In a manner similar to that which we used to calculate the centroid of a figure by breaking it up into component areas, we can calculate the moment of inertia of a composite area

$$
\begin{aligned}
& I_{y}=I_{\bar{y}}+A x^{2} \\
& I_{x}=I_{\bar{x}}+A y^{2}
\end{aligned}
$$

MEMPHIS

- Parallel Axis Theorem

o Inside the back cover of the book, in the same figure that we used for the centroid calculations we can find calculations for moments of inertia

$$
\begin{aligned}
& I_{y}=I_{\bar{y}}+A x^{2} \\
& I_{x}=I_{\bar{x}}+A y^{2}
\end{aligned}
$$

MEMENPSTIS

$I_{y}=I_{\bar{y}}+A x^{2}$

Parallel Axis Theorem $I_{x}=I_{\bar{x}}+A y^{2}$

- HERE IS A CRITICAL MOMENT OF CAUTION
- REMEMBER HOW THE PARALLEL AXIS IS WRITTEN
- IF THE AXIS SHOWN IN THE TABLE IS NOT THROUGH THE CENTROID, THEN THE FORMULA DOES NOT GIVE YOU THE MOMENT OF INERTIA THROUGH THE CENTROIDAL AXIS

$$
I_{y}=I_{\bar{y}}+A x^{2}
$$

$$
I_{x}=I_{\bar{x}}+A y^{2}
$$

- By example
- The I_{y} given for the Semicircular area in the table is about the centroidal axis
- The I_{x} given for the same Semicircular area in the table is not about the centroidal axis

TMEMP

o We want to locate the moment of inertia in the position shown of a semicircular area as shown about the x and y axis, I_{x} and I_{y}

MEMPHIS
 Using the Table

o First, we can look at the table and find the I_{x} and I_{y} about the axis as shown

MEMPHIS

Using the Table

- Calculating the I_{y} you should notice that the y axis in the table is the centroid axis so we won't have to move it yet

$$
\begin{aligned}
& I_{\bar{y}}=\frac{1}{8} \pi r^{4} \\
& I_{\bar{y}}=\frac{1}{8} \pi(5 i n)^{4}
\end{aligned}
$$

$I_{\bar{y}}=245.44 i^{4}$

- - Using the Table

o Next we can calculate the area

$$
\begin{aligned}
& A=\frac{\pi(5 i n)^{2}}{2} \\
& A=39.27 i n^{2}
\end{aligned}
$$

MEMPHIS

Using the Table

o If we know that distance between the y axis and the ybar axis, we can calculate the moment of inertia using the parallel axis theorem

MEMPHIS

\cdots Using the Table

- I changed the notation for the distances moved to avoid confusion with the distance from the origin
$I_{y}=I_{\bar{y}}+A d_{x}{ }^{2}$

$$
I_{x}=I_{\bar{x}}+A d_{y}{ }^{2}
$$

MEMPHIS

- U Using the Table
- The axis we are considering may not always be a the origin.

$$
\begin{aligned}
& |-5 "-| \\
& I_{y}=I_{\bar{y}}+A d_{x}{ }^{2} \\
& I_{x}=I_{\bar{x}}+A d_{y}{ }^{2}
\end{aligned}
$$

MEMPHIS.

- - Using the Table

o If the y axis is 8 inches to the left of the centroidal axis, then the moment of inertia about the y axis would be
$I_{y}=I_{\bar{y}}+A d_{x}^{2}$
$I_{y}=245.44 i n^{4}+\left(39.27 i n^{2}\right)(8 i n)^{2}$

$$
I_{y}=2758.72 i^{4}
$$

MEMPHIS

Using the Table

o The moment of inertia about the x axis is a slightly different case since the formula presented in the table is the moment of inertia about the base of the semicircle, not the centroid

MEMPHIS.

- Using the Table

o To move it to the moment of inertia about the x-axis, we have to make two steps

MEMPHIS

Using the Table
 o We can combine the two steps

$$
\begin{aligned}
& I_{\bar{x}}=I_{\text {base }}-A\left(d_{\text {base to centroid }}\right)^{2} \\
& I_{x}=I_{\bar{x}}+A\left(d_{\text {centroid to x-axis }}\right)^{2} \\
& I_{x}=I_{\text {base }}-A\left(d_{\text {base to centroid }}\right)^{2}+A\left(d_{\text {centroid to x-axis }}\right)^{2}
\end{aligned}
$$

- - Using the Table

o Don't try and cut corners here
o You have to move to the centroid first
$I_{\bar{x}}=I_{\text {base }}-A\left(d_{\text {base to centroid }}\right)^{2}$
$I_{x}=I_{\bar{x}}+A\left(d_{\text {centroid to x-axis }}\right)^{2}$
$I_{x}=I_{\text {base }}-A\left(d_{\text {base to centroid }}\right)^{2}+A\left(d_{\text {centroid to } \mathrm{x} \text {-xxis }}\right)^{2}$

MEMPHIS.

Using the Table

o In this problem, we have to locate the y centroid of the figure with respect to the base

- We can use the table to determine this
$\bar{y}=\frac{4 r}{3 \pi}=\frac{4(5 i n)}{3 \pi}$
$\bar{y}=2.12 i n$

The miveriris

- Using the Table

- Now the I_{x} in the table is given about the bottom of the semicircle, not the centroidal axis
- That is where the x axis is shown in the table

MEMPHIS.

Using the Table

- So you can use the formula to calculate the $I_{x}\left(I_{\text {base }}\right)$ about the bottom of the semicircle

$$
\begin{aligned}
& I_{\text {base }}=\frac{1}{8} \pi r^{4} \\
& I_{\text {base }}=\frac{1}{8} \pi(5 i n)^{4} \\
& I_{\text {base }}=245.44 \mathrm{in}^{4}
\end{aligned}
$$

MEMEMPHIS.

- U Using the Table

o Now we can calculate the moment of inertia about the x centroidal axis
$I_{b a s e}=I_{\bar{x}}+A d_{\text {base to centroid }}^{2}$
$I_{\bar{x}}=I_{\text {base }}-A d_{\text {base to centroid }}^{2}$
$I_{\bar{x}}=245.44 i n^{4}-\left(39.27 i n^{2}\right)(2.12 i n)^{2}$
$I_{\bar{x}}=68.60 i^{4}$

27

MEMPHIS

Using the Table
 o And we can move that moment of inertia the the x-axis

$$
I_{x}=I_{\bar{x}}+A d_{\text {centroid to } \mathrm{x} \text {-axis }}^{2}
$$

$$
I_{x}=68.60 i n^{4}+\left(39.27 i n^{2}\right)(6 i n+2.12 i n)^{2}
$$

$$
I_{x}=2657.84 i n^{4}
$$

MEMPHIS.

- - Using the Table

- The polar moment of inertia about the origin would be
$J_{o}=I_{x}+I_{y}$
$J_{O}=2657.84 i n^{4}+2758.72 i n^{4}$
$J_{O}=5416.56 \mathrm{in}^{4}$

29

MEMPHIS.

Another Example

- We can use the parallel axis theorem to find the moment of inertia of a composite figure

MEMMP

\bullet Another Example

The miveriris

- Another Example

Since the parallel axis theorem will require the area for each section, that is a reasonable place to start

ID	Area
	$\left(\right.$ in $\left.^{2}\right)$
I	36
II	9
III	27

MEMPHIS

-

Another Example

We can locate the centroid of each area with respect the y axis.

MEMPHIS
 Another Example

From the table in the back of the book we find that the moment of inertia of a rectangle about its y-centroid

- And

In this example, for Area $I, b=6^{\prime \prime}$ and $h=6^{\prime \prime}$
$I_{\bar{y}}=\frac{1}{12}(6 i n)(6 i n)^{3}$
$I_{\bar{y}}=108 i n^{4}$

MEMPHIS
 -•
 Another Example

For the first triangle, the moment of inertia calculation isn't as obvious

MEMPHIS
 Another Example

The way it is presented in the text, we can only find the I_{x} about the centroid

THEMPIVESITYIS.

Another Example

So the moment of inertia of the II triangle can be calculated using the formula with the correct orientation.

$$
\begin{aligned}
& I_{\bar{y}}=\frac{1}{36} b h^{3} \\
& I_{\bar{y}}=\frac{1}{36}(6 \mathrm{in})(3 \mathrm{in})^{3} \\
& I_{\bar{y}}=4.5 \mathrm{in}^{4}
\end{aligned}
$$

MEMPHIS

-.

Another Example

The same is true for the III triangle

$$
\begin{aligned}
& I_{\bar{y}}=\frac{1}{36} b h^{3} \\
& I_{\bar{y}}=\frac{1}{36}(6 \mathrm{in})(9 \mathrm{in})^{3} \\
& I_{\bar{y}}=121.5 \mathrm{in}^{4}
\end{aligned}
$$

Another Example

Now we can enter the $\mathrm{I}_{\mathrm{ybar}}$ for each sub-area into the table

Sub- Area	Area $\left(\mathrm{in}^{2}\right)$	$x^{2} \mathrm{xbar}_{\mathrm{i}}$ (in)	$\mathrm{I}_{\mathrm{ybar}}$ $\left(\mathrm{in}^{4}\right)$
I	36	3	108
II	9	7	4.5
III	27	6	121.5

MHEMPNESHIS
 -•
 Another Example

We perform the same type analysis for the I_{x}

ID	Area
	(in $\left.^{2}\right)$
I	36
II	9
III	27

Locating the y-centroids from the x-axis

Sub-Area	Area $\left(\mathrm{in}^{2}\right)$	ybar $_{\mathrm{i}}$ (in)
I	36	3
II	9	2
III	27	-2

- And ther Example

Determining the I_{x} for each sub-area

Sub-Area	Area $\left(\mathrm{in}^{2}\right)$	ybar $_{\mathrm{i}}$ (in)	$\mathrm{I}_{\text {xbar }}$ $\left(\mathrm{in}^{4}\right)$
I	36	3	108
II	9	2	18
III	27	-2	54

MEMPHIS

Homework

o Problem 10-27

- Problem 10-29
o Problem 10-47

