Surveying - Traverse Introduction - Almost all surveying requires some calculations to reduce measurements into a more useful form for determining distance, earthwork volumes, land areas, etc. A traverse is developed by measuring the distance and angles between points that found the boundary of a site - We will learn several different techniques to compute the area inside a traverse

Distance - Traverse

Methods of Computing Area

\Rightarrow A simple method that is useful for rough area estimates is a graphical method
$>$ In this method, the traverse is plotted to scale on graph paper, and the number of squares inside the traverse are counted

Distance - Traverse

Methods of Computing Area

Area $A B D=\frac{1}{2}$ ad $\sin \alpha$
Area $B C D=\frac{1}{2} b c \sin \beta$

Surveying - Traverse

Balancing Angles

$>$ If the angles do not close by a reasonable amount, mistakes in measuring have been made
$>$ If an error of 1 ' is made, the surveyor may correct one angle by 1'
$>$ If an error of 2' is made, the surveyor may correct two angles by 1' each
$>$ If an error of 3^{\prime} is made in a 12 sided traverse, the surveyor may correct each angle by $3^{\prime} / 12$ or 15 "

Surveying - Traverse

Balancing Angles

$>$ Before the areas of a piece of land can be computed, it is necessary to have a closed traverse
> The interior angles of a closed traverse should total:

$$
(n-2)\left(180^{\circ}\right)
$$

where n is the number of sides of the traverse

Surveying - Traverse

Balancing Angles

$>$ A surveying heuristic is that the total angle should not vary from the correct value by more than the square root of the number of angles measured times the precision of the instrument
> For example an eight-sided traverse using a 1' transit, the maximum error is:

$$
\pm 1^{\prime} \sqrt{8}= \pm 2.83^{\prime}= \pm 3^{\prime}
$$

Surveying - Traverse

Error of Closure

$>$ When latitudes are added together, the resulting error is called the error in latitudes $\left(E_{L}\right)$
$>$ The error resulting from adding departures together is called the error in departures (E_{D})

Surveying - Traverse

Latitudes and Departures - Example

Surveying - Traverse

Balancing Latitudes and Departures

$>$ Balancing the latitudes and departures of a traverse attempts to obtain more probable values for the locations of the corners of the traverse
> A popular method for balancing errors is called the compass or the Bowditch rule
> The "Bowditch rule" as devised by Nathaniel Bowditch, surveyor, navigator and mathematician, as a proposed solution to the problem of compass traverse adjustment, which was posed in the American journal The Analyst in 1807.

Surveying - Traverse
 Balancing Latitudes and Departures
 > The compass method assumes:
 1) angles and distances have same error
 2) errors are accidental
 > The rule states:
 "The error in latitude (departure) of a line is to the total error in latitude (departure) as the length of the line is the perimeter of the traverse"

Surveying - Traverse

Latitudes and Departures - Example
Recall the results of our example problem

Side	Bearing				Length (ft)	Latitude	Departure
		degree	minute				
AB	S	6	15	W	189.53	-188.403	-20.634
BC	S	29	38	E	175.18	-152.268	86.617
CD	N	81	18	w	197.78	29.916	-195.504
DE	N	12	24	w	142.39	139.068	-30.576
EA	N	42	59	E	234.58	171.607	159.933
					939.46	-0.079	-0.163

Surveying - Traverse

Balancing Latitudes and Departures

Combining the latitude and departure calculations with corrections gives:

Surveying - Traverse

Group Example Problem 3

In the survey of your assign site in Project \#3, you will have to balance data collected in the following form:

Surveying - Traverse

Calculating Traverse Area

$>$ The best-known procedure for calculating land areas is the double meridian distance (DMD) method
$>$ The meridian distance of a line is the east-west distance from the midpoint of the line to the reference meridian
$>$ The meridian distance is positive (+) to the east and negative (-) to the west

Surveying - Traverse

Calculating Traverse Area

$>$ The most westerly and easterly points of a traverse may be found using the departures of the traverse
$>$ Begin by establishing a arbitrary reference line and using the departure values of each point in the traverse to determine the far westerly point

Surveying - Traverse

Calculating Traverse Area

Surveying - Traverse

DMD Calculations

Surveying - Traverse

DMD Calculations

Side	Balanced		
	Latitude	Departure	
AB	-188.388	-20.601	-20.601
BC	-152.253	86.648	
CD	29.933	-195.470	
DE	139.080	-30.551	
EA	171.627	159.974	

The DMD of line $A B$ is departure of line $A B$

Surveying - Traverse DMD Calculations
 却

Side	Balanced		
	Latitude	Departure	
AB			-188.388
	-20.601	+	-20.601
BC	-152.253	86.648	+
CD	29.933	-195.470	
DE	139.080	-30.551	
EA	171.627	159.974	

The DMD of line $B C$ is $D M D$ of line $A B+$ departure of line $A B$ + the departure of line BC

Surveying - Traverse
 DMD Calculations

Side	Balanced		
	Latitude	Departure	
AB			188.388
BC	-20.601	-20.601	
CD	-152.253	86.648	45.447
DE	29.933	-195.470	+
EA	139.080	-63.375	
	171.627	159.951	+

The DMD of line DE is DMD of line CD + departure of line $C D$ + the departure of line $D E$

Surveying - Traverse

DMD Calculations

Side	Balanced		DMD
	Latitude	Departure	
AB	-188.388	-20.601	-20.601
BC	-152.253	86.648	$+\quad 45.447$
CD	29.933	-195.470	$+\quad-63.375$
DE	139.080	-30.551	
EA	171.627	159.974	

The DMD of line CD is DMD of line $B C+$ departure of line $B C$ + the departure of line $C D$

Surveying - Traverse

DMD Calculations

Side	Balanced		
	Latitude	Departure	
AB	-188.388	-20.601	-20.601
BC	-152.253	86.648	45.447
CD	29.933	-195.470	-63.375
DE	139.080	-30.551	+-289.397
EA	171.627	159.974	+-159.974

The DMD of line EA is DMD of line DE + departure of line DE + the departure of line EA

Side	Balanced		
	Latitude	Departure	
AB	-188.388	-20.601	-20.601
BC	-152.253	86.648	45.447
CD	29.933	-195.470	-63.375
DE	139.080	-30.551	-289.397
EA	171.627	159.974	-159.974

Notice that the DMD values can be positive or negative

Surveying - Traverse

Traverse Area - Double Area

$>$ The sum of the products of each points DMD and latitude equal twice the area, or the double area

Side	Balanced		DMD	Double Areas
	Latitude	Departure		
AB	-188.388	-20.601	-20.601	3,881
BC	-152.253	86.648	45.447	
CD	29.933	-195.470	-63.375	
DE	139.080	-30.551	-289.397	
EA	171.627	159.974	-159.974	

$>$ The double area for line $A B$ equals DMD of line $A B$ times the latitude of line $A B$

Surveying - Traverse
 Traverse Area - Double Area

> The sum of the products of each points DMD and latitude equal twice the area, or the double area

Side	Balanced		DMD	Double Areas
	Latitude	Departure		
AB	-188.388	-20.601	-20.601	3,881
BC	-152.253	86.648	45.447	-6,919
CD	29.933	-195.470	-63.375	
DE	139.080	-30.551	-289.397	
EA	171.627	159.974	-159.974	

> The double area for line BC equals DMD of line BC times the latitude of line BC the latiude of line BC

Surveying - Traverse

Traverse Area - Double Area
> The sum of the products of each points DMD and latitude equal twice the area, or the double area

Side	Balanced		DMD	Double Areas
	Latitude	Departure		
AB	-188.388	-20.601	-20.601	3,881
BC	-152.253	86.648	45.447	-6,919
CD	29.933	-195.470	-63.375	-1,897
DE	139.080	-30.551	-289.397	-40,249
EA	171.627	159.974	-159.974	

$>$ The double area for line DE equals DMD of line DE times the latitude of line DE

Surveying - Traverse

Traverse Area - Double Area
> The sum of the products of each points DMD and latitude equal twice the area, or the double area

Side	Balanced			
	Latitude	Departure		
			DMD	Double Areas
AB	-188.388	-20.601	-20.601	3,881
BC	-152.253	86.648	45.447	$-6,919$
CD	29.933	-195.470	-63.375	$-1,897$
DE	139.080	-30.551	-289.397	$-40,249$
EA	171.627	159.974	-159.974	$-27,456$

[^0]
Surveying - Traverse

Traverse Area - Double Area

$>$ The sum of the products of each points DMD and latitude equal twice the area, or the double area

Side	Balanced			
	Latitude	Departure		
			DMD	Double Areas
AB	-188.388	-20.601	$\mathbf{- 2 0 . 6 0 1}$	$\mathbf{3 , 8 8 1}$
BC	-152.253	86.648	$\mathbf{4 5 . 4 4 7}$	$-6,919$
CD	29.933	-195.470	$\mathbf{- 6 3 . 3 7 5}$	$\mathbf{- 1 , 8 9 7}$
DE	139.080	-30.551	$\mathbf{- 2 8 9 . 3 9 7}$	
EA	171.627	159.974	$\mathbf{- 1 5 9 . 9 7 4}$	

> The double area for line CD equals DMD of line CD times the latitude of line CD

Surveying - Traverse

Traverse Area - Double Area
$>$ The sum of the products of each points DMD and latitude equal twice the area, or the double area

Side	Balanced			
	Latitude	Departure		
			DMD	Double Areas
AB	-188.388	-20.601	-20.601	3,881
BC	-152.253	86.648	45.447	$-6,919$
CD	29.933	-195.470	-63.375	$-1,897$
DE	139.080	-30.551	-289.937	$-40,249$
EA	171.627	159.974	-159.974	$-27,456$

$>$ The double area for line EA equals DMD of line EA times the latitude of line EA

Surveying - Traverse

Traverse Area - Double Area

$>$ The sum of the products of each points DMD and latitude equal twice the area, or the double area

Surveying - Traverse
 Traverse Area - Double Area
 > The word "acre" is derived from Old English æcer (originally meaning "open field", cognate to Swedish "åker", German acker, Latin ager and Greek aypos (agros).
 $>$ The acre was selected as approximately the amount of land tillable by one man behind an ox in one day.
 $>$ This explains one definition as the area of a rectangle with sides of length one chain (66 ft .) and one furlong (ten chains or 660 ft .).

Surveying - Traverse

Traverse Area - Double Area

$>$ The word "acre" is derived from Old English æcer (originally meaning "open field", cognate to Swedish "åker", German acker, Latin ager and Greek $\alpha \gamma \rho \circ$ S (agros).
$>$ A long narrow strip of land is more efficient to plough than a square plot, since the plough does not have to be turned so often.
$>$ The word "furlong" itself derives from the fact that it is one furrow long.

Surveying - Traverse

Traverse Area - Example 4
$>$ Find the area enclosed by the following traverse

Side	Balanced		DMD	Double Areas
	Latitude	Departure		
AB	600.0	200.0		
BC	100.0	400.0		
CD	0.0	100.0		
DE	-400.0	-300.0		
EA	-300.0	-400.0		

1 acre $=43,560 \mathrm{ft}^{2}$

Surveying - Traverse

Rectangular Coordinates

$>$ Rectangular coordinates are the convenient method available for describing the horizontal position of survey points
$>$ With the application of computers, rectangular coordinates are used frequently in engineering projects
$>$ In the US, the \boldsymbol{x}-axis corresponds to the east-west direction and the \boldsymbol{y}-axis to the north-south direction

Surveying - Traverse

Rectangular Coordinates Example

Surveying - Traverse

Rectangular Coordinates Example

Surveying - Traverse

Area Computed by Coordinates

The area of a traverse can be computed by taking each y coordinate multiplied by the difference in the two adjacent \boldsymbol{x} coordinates
(using a sign convention of + for next side and - for last side)

Surveying - Traverse Area Computed by Coordinates		
	Twice the area equals: $=340.640$ (139.373-0.0)	
	+ 152.253(226.020-159 $+0.0(30.551-139.373)$	
	+ $29.933(0.0-226.020)$	
	+ 169.013(159.974-30.551)	
	$=72,640.433 \mathrm{tt} \mathrm{t}^{2}$	
Area $=0.853 \mathrm{acre}$	Area $=36,320$	

End of Surveying - Traverse

Any Questions?

[^0]: 1 acre $=43,560 \mathrm{ft} .^{2}$

