

Introduction

- Almost all surveying requires some calculations to reduce measurements into a more useful form for determining distance, earthwork volumes, land areas, etc.
- A traverse is developed by measuring the distance and angles between points that found the boundary of a site
- We will learn several different techniques to compute the area inside a traverse

Surveying - Traverse

Surveying - Traverse

Distance - Traverse

Methods of Computing Area

- A simple method that is useful for rough area estimates is a graphical method
- In this method, the traverse is plotted to scale on graph paper, and the number of squares inside the traverse are counted

Distance - Traverse

Methods of Computing Area

Area ABC = $\frac{1}{2}$ ac sin α

Distance - Traverse

Methods of Computing Area

Area ABD = $\frac{1}{2}$ ad sin α

Area BCD = $\frac{1}{2}bc\sin\beta$

Area ABCD = Area ABD + Area BCD

Distance - Traverse

Methods of Computing Area

Area ABE =
$$\frac{1}{2}$$
ae sin α

Area CDE =
$$\frac{1}{2}$$
 cd sin β

To compute Area BCD more data is required

Surveying - Traverse

Balancing Angles

- Before the areas of a piece of land can be computed, it is necessary to have a closed traverse
- The interior angles of a closed traverse should total:

$$(n - 2)(180^{\circ})$$

where n is the number of sides of the traverse

Surveying - Traverse

Surveying - Traverse

Balancing Angles

- A surveying heuristic is that the total angle should not vary from the correct value by more than the square root of the number of angles measured times the precision of the instrument
- For example an eight-sided traverse using a 1' transit, the maximum error is:

$$\pm 1'\sqrt{8} = \pm 2.83' = \pm 3'$$

Surveying - Traverse

Balancing Angles

- If the angles do not close by a reasonable amount, mistakes in measuring have been made
- If an error of 1' is made, the surveyor may correct one angle by 1'
- If an error of 2' is made, the surveyor may correct two angles by 1' each
- If an error of 3' is made in a 12 sided traverse, the surveyor may correct each angle by 3'/12 or 15"

Surveying - Traverse

Latitudes and Departures

> The closure of a traverse is checked by computing the latitudes and departures of each of it sides

Surveying - Traverse Latitudes and Departures The latitude of a line is its projection on the north—south meridian The departure of a line is its projection on the east—west line W Bearing A Departure AB Departure AB A northeasterly bearing has: + latitude and + departure

Surveying - Traverse

Error of Closure

> Consider the following statement:

"If start at one corner of a closed traverse and walk its lines until you return to your starting point, you will have walked as far north as you walked south and as far east as you have walked west"

 \triangleright Therefore Σ latitudes = 0 and Σ departures = 0

Surveying - Traverse

Error of Closure

- ➤ When latitudes are added together, the resulting error is called the error in latitudes (E_L)
- The error resulting from adding departures together is called the error in departures (E_D)

Surveying - Traverse

Error of Closure

If the measured bearings and distances are plotted on a sheet of paper, the figure will not close because of E_L and E_D

Surveying - Traverse Latitudes and Departures - Example A N 42° 59'E 234.58' B 175.18' \$ 29° 38'E N 12° 24' W 197.78' N 81° 18' W C

Surveying - Traverse Latitudes and Departures - Example Departure AB $-W = -(189.53 \text{ ft.}) \sin(6.15') = -20.63 \text{ ft.}$ E Latitude AB $-S = -(189.53 \text{ ft.}) \cos(6.15') = -188.40 \text{ ft.}$

Balancing Latitudes and Departures

- > The *compass* method assumes:
 - 1) angles and distances have same error
 - 2) errors are accidental
- > The rule states:

"The error in latitude (departure) of a line is to the total error in latitude (departure) as the length of the line is the perimeter of the traverse"

Surveying - Traverse

Latitudes and Departures - Example

Recall the results of our example problem

Side		Bea degree	ring minutes		Length (ft)	Latitude	Departure
AB	S	6	15	W	189.53		
BC	S	29	38	E	175.18		
CD	N	81	18	W	197.78		
DE	N	12	24	W	142.39		
EA	N	42	59	E	234.58		
					•		

Surveying - Traverse

Latitudes and Departures - Example

Recall the results of our example problem

Side	Bearing			Length (ft)	Latitude	Departure	
		degree	minutes				
AB	S	6	15	W	189.53	-188.403	-20.634
BC	S	29	38	E	175.18	-152.268	86.617
CD	N	81	18	W	197.78	29.916	-195.504
DE	N	12	24	W	142.39	139.068	-30.576
EA	N	42	59	E	234.58	171.607	159.933
,	•				939.46	-0.079	-0.163
•	-				939.46	-0.079	-0.163

Surveying - Traverse Balancing Latitudes and Departures Latitude AB -S = -(189.53 ft.)cos(615') = -188.40 ft. W A E Correction in Lat AB B Correction in La

Surveying - Traverse Balancing Latitudes and Departures Departure AB -W = -(189.53 ft.) sin(6'15') = -20.63 ft. E Correction in Dep AB E Correction in Dep AB B Correction in Dep AB Correction in Dep AB B Corr

Surveying - Traverse Group Example Problem 3 In the survey of your assign site in Project #3, you will have to balance data collected in the following form: A N 69° 53' E N Solution of the survey of your assign site in Project #3, you will have to balance data collected in the following form:

Surveying - Traverse Calculating Traverse Area The best-known procedure for calculating land areas is the double meridian distance (DMD) method The meridian distance of a line is the east-west distance from the midpoint of the line to the reference meridian The meridian distance is positive (+) to the east and

negative (-) to the west

DMD Calculations

	Bala			
Side	Latitude	ide Departure		
				DMD
AB	-188.388	-20.601	+	-20.601
BC	-152.253	86.648	+	45.447
CD	29.933	-195.470		
DE	139.080	-30.551		
EA	171.627	159.974		

The **DMD** of line BC is DMD of line AB + departure of line AB + the departure of line BC

Surveying - Traverse

DMD Calculations

	Bala			
Side	Latitude	Latitude Departure		
				DMD
AB	-188.388	-20.601		-20.601
BC	-152.253	86.648	+	45.447
CD	29.933	-195.470	+	-63.375
DE	139.080	-30.551		
EA	171.627	159.974		

The **DMD** of line CD is DMD of line BC + departure of line BC + the departure of line CD

Surveying - Traverse

DMD Calculations

	Bala	nced		
Side	Latitude	Departure		
				DMD
AB	-188.388	-20.601		-20.601
BC	-152.253	86.648		45.447
CD	29.933	-195.470	+	-63.375
DE	139.080	-30.551	+	-289.397
EA	171.627	159.974		

The **DMD** of line DE is DMD of line CD + departure of line CD + the departure of line DE

Surveying - Traverse

DMD Calculations

	Bala		
Side	Latitude	Departure	
			DMD
AB	-188.388	-20.601	-20.601
BC	-152.253	86.648	45.447
CD	29.933	-195.470	-63.375
DE	139.080	-30.551	+ -289.397
EA	171.627	159.974	+ -159.974

The ${\bf DMD}$ of line EA is DMD of line DE + departure of line DE + the departure of line EA

Surveying - Traverse

DMD Calculations

	Bala		
Side	Latitude	Departure	
			DMD
AB	-188.388	-20.601	-20.601
BC	-152.253	86.648	45.447
CD	29.933	-195.470	-63.375
DE	139.080	-30.551	-289.397
EA	171.627	159.974	-159.974

Notice that the DMD values can be positive or negative

Surveying - Traverse

Traverse Area - Double Area

> The sum of the products of each points DMD and latitude equal twice the area, or the *double area*

	Balanced				
Side	Latitude	Departure			
_		_	DMI	D	Double Areas
AB	-188.388	-20.601	-2	0.601	3,881
BC	-152.253	86.648	4	5.447	
CD	29.933	-195.470	-6	3.375	
DE	139.080	-30.551	-28	9.397	
EA	171.627	159.974	-15	9.974	

The double area for line AB equals DMD of line AB times the latitude of line AB

Traverse Area - Double Area

The sum of the products of each points DMD and latitude equal twice the area, or the double area

	Balanced			
Side	Latitude	Departure		
			DMD	Double Areas
AB	-188.388	-20.601	-20,601	3,881
BC	-152.253	86.648	45.447	-6,919
CD	29.933	-195.470	-63.375	
DE	139.080	-30.551	-289.397	
EA	171.627	159.974	-159.974	

The double area for line BC equals DMD of line BC times the latitude of line BC

Surveying - Traverse

Traverse Area - Double Area

The sum of the products of each points DMD and latitude equal twice the area, or the double area

ſ		Bala	nced		
	Side	Latitude	Departure		
L				DMD	Double Areas
ı	AB	-188.388	-20.601	-20.601	3,881
ı	BC	-152.253	86.648	45.447	-6,919
ı	CD	29.933	-195.470	-63.375	-1,897
ı	DE	139.080	-30.551	-289.397	1
ı	EA	171.627	159.974	-159.974	

The double area for line CD equals DMD of line CD times the latitude of line CD

Surveying - Traverse

Traverse Area - Double Area

The sum of the products of each points DMD and latitude equal twice the area, or the double area

	Balanced			
Side	Latitude	Departure		
			DMD	Double Areas
AB	-188.388	-20.601	-20.601	3,881
BC	-152.253	86.648	45.447	-6,919
CD	29.933	-195.470	-63.375	-1,897
DE	139.080	-30.551	-289.397	-40,249
EA	171.627	159.974	-159.974	

The double area for line DE equals DMD of line DE times the latitude of line DE

Surveying - Traverse

Traverse Area - Double Area

> The sum of the products of each points DMD and latitude equal twice the area, or the double area

Ī		Bala	nced		
	Side	Latitude	Departure		
				DMD	Double Areas
ı	AB	-188.388	-20.601	-20.601	3,881
ı	BC	-152.253	86.648	45.447	-6,919
ı	CD	29.933	-195.470	-63.375	-1,897
ı	DE	139.080	-30.551	-289.397	-40,249
ı	EA	171.627	159.974	-159.974	-27,456

The double area for line EA equals DMD of line EA times the latitude of line EA

Surveying - Traverse

Traverse Area - Double Area

The sum of the products of each points DMD and latitude equal twice the area, or the double area

	Balanced			
Side	Latitude	Departure		
			DMD	Double Areas
AB	-188.388	-20.601	-20.601	3,881
BC	-152.253	86.648	45.447	-6,919
CD	29.933	-195.470	-63.375	-1,897
DE	139.080	-30.551	-289.397	-40,249
EA	171.627	159.974	-159.974	-27,456

1 acre = 43,560 ft.²

Surveying - Traverse

Traverse Area - Double Area

> The sum of the products of each points DMD and latitude equal twice the area, or the double area

	Balanced			
Side	Latitude	Departure		
			DMD	Double Areas
AB	-188.388	-20.601	-20.601	3,881
BC	-152.253	86.648	45.447	-6,919
CD	29.933	-195.470	-63.375	-1,897
DE	139.080	-30.551	-289.397	-40,249
EA	171.627	159.974	-159.974	-27,456
			0 4	70.044

1 acre = $43,560 \text{ ft.}^2$

Area = 36,320 ft.² acre

Traverse Area - Double Area

- The word "acre" is derived from Old English æcer (originally meaning "open field", cognate to Swedish "åker", German acker, Latin ager and Greek αγρος (agros).
- > The acre was selected as approximately the amount of land tillable by one man behind an ox in one day.
- This explains one definition as the area of a rectangle with sides of length one chain (66 ft.) and one furlong (ten chains or 660 ft.).

Surveying - Traverse

Traverse Area - Double Area

- The word "acre" is derived from Old English æcer (originally meaning "open field", cognate to Swedish "åker", German acker, Latin ager and Greek αγρος (agros).
- A long narrow strip of land is more efficient to plough than a square plot, since the plough does not have to be turned so often.
- > The word "furlong" itself derives from the fact that it is one furrow long.

Surveying - Traverse

Traverse Area - Double Area

The word "acre" is derived from Old English æcer (originally meaning "open field", cognate to Swedish "åker", German acker, Latin ager and Greek αγρος (agros).

Surveying - Traverse

Traverse Area – Example 4

> Find the area enclosed by the following traverse

	Balanced			
Side	Latitude	Departure		
			DMD	Double Areas
AB	600.0	200.0		
BC	100.0	400.0		
CD	0.0	100.0		
DE	-400.0	-300.0		
EA	-300.0	-400.0		
2 Area =				

1 acre = 43,560 ft.2

Area = ft.²

Surveying - Traverse

DPD Calculations

- The same procedure used for DMD can be used the double parallel distances (DPD) are multiplied by the balanced departures
- The **parallel distance** of a line is the distance from the midpoint of the line to the reference parallel or east-west

Surveying - Traverse

Rectangular Coordinates

- Rectangular coordinates are the convenient method available for describing the horizontal position of survey points
- With the application of computers, rectangular coordinates are used frequently in engineering projects
- In the US, the x-axis corresponds to the east-west direction and the y-axis to the north-south direction

Area Computed by Coordinates

The area of a traverse can be computed by taking each ${\it y}$ coordinate multiplied by the difference in the two adjacent ${\it x}$ coordinates

(using a sign convention of + for next side and - for last side)

