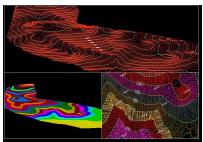
CIVL 1112 Cut-and-Fill - Part 1 1/6

Cut and Fill Calculations

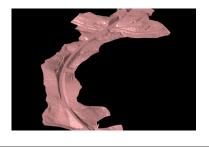
Calculation of the cut-and-fill volumes is an essential component of any site development project


COLUMN CO

Τ.

Cut and Fill Calculations

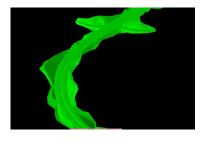
Topographic data is required to estimate cutand-fill volumes



2

Cut and Fill Calculations

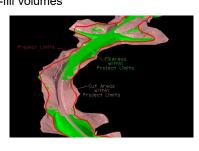
Topographic data is required to estimate cutand-fill volumes



3

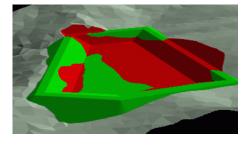
Cut and Fill Calculations

Topographic data is required to estimate cutand-fill volumes

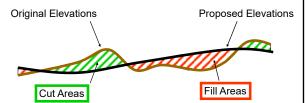

4

6

Cut and Fill Calculations

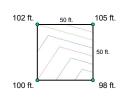

Topographic data is required to estimate cutand-fill volumes

Cut and Fill Calculations


Topographic data is required to estimate cutand-fill volumes

Cut and Fill Calculations

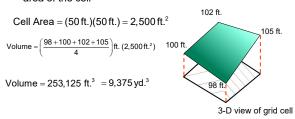
- From the topographic data of the site, different alternative site plans can be evaluated
- The basic calculation is the difference between the desired elevation and the original elevation



7

Cut and Fill Calculations

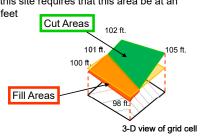
- Traditionally, elevations for a topographic survey are collected using some regular grid system
- Using the elevation data and the grid system, a threedimensional model of the cut-and-fill volumes can be constructed
 102 ft.


100 ft. 100 ft. 3-D view of grid cell

8

Cut and Fill Calculations

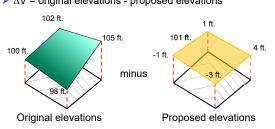
- The volume of material in this grid cell may be estimated as the volume of the quadrilateral cell
- Volume equals the average of the cell height times the area of the cell


9

11

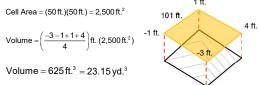
Cut and Fill Calculations

- Consider a cell in the grid system with the following elevations
- Development at this site requires that this area be at an elevation of 101 feet


10

12

Cut and Fill Calculations


- To estimate the cut-and-fill required in this cell, first compute the change in volume
- > ΔV = original elevations proposed elevations

Cut and Fill Calculations

- > The volume of cut-and-fill in this grid cell may be estimated as the volume of the quadrilateral cell
- Volume equals the average of the cell height times the area of the cell

> The total cut-and-fill can be estimated by summing the cutand-fill from each cell for the entire grid system

CIVL 1112 Cut-and-Fill - Part 1 3/6

Cut and Fill Calculations

- Compute the total cut-and-fill for the following site
- > The original elevations are:

	1	2	3	4	5
1	105	104	104	103	102
2	104	104	103	102	101
3	103	103	102	101	100
4	103	102	101	100	99
5	101	100	99	98	97

- > The size of each cell is 25 ft. by 25 ft.
- The proposed site is at an elevation of 101 ft.

13

Cut and Fill Calculations • Below is an Excel plot of the original elevations and the proposed elevations • Description of the original elevations and the proposed elevations

14

16

18

Cut and Fill Calculations

Compute the elevation change: original elevations – proposed elevations

	1	2	3	4	5
1	105	104	104	103	102
2	104	104	103	102	101
3	103	103	102	101	100
4	103	102	101	100	99
5	101	100	99	98	97

- In this case, the proposed elevations are 101 ft. for the entire site.
- In general, the proposed elevations vary over the site.

15

Cut and Fill Calculations

Compute the elevation change: original elevations – proposed elevations

	1	2	3	4	5
1	4.00	3.00	3.00	2.00	1.00
2	104	104	103	102	101
3	103	103	102	101	100
4	103	102	101	100	99
5	101	100	99	98	97

➤ Let's consider the change in elevation for the 1st row

Cut and Fill Calculations

Compute the elevation change: original elevations – proposed elevations

	1	2	3	4	5
1	4.00	3.00	3.00	2.00	1.00
2	104	104	103	102	101
3	2.00	2.00	1.00	0.00	-1.00
4	103	102	101	100	99
5	101	100	99	98	97

Let's consider the change in elevation for the 2nd row

Cut and Fill Calculations

Compute the elevation change:

original elevations - proposed elevations

	1	2	3	4	5
1	4.00	3.00	3.00	2.00	1.00
2	104	104	103	102	101
3	2.00	2.00	1.00	0.00	-1.00
4	103	102	101	100	99
5	0.00	-1.00	-2.00	-3.00	-4.00

Let's consider the change in elevation for the 3rd row

Cut and Fill Calculations

Compute the elevation change: original elevations - proposed elevations

	1	2	3	4	5
1	4.00	3.00	3.00	2.00	1.00
2	3.00	3.00	2.00	1.00	0.00
3	2.00	2.00	1.00	0.00	-1.00
4	2.00	1.00	0.00	-1.00	-2.00
5	0.00	-1.00	-2.00	-3.00	-4.00

> Positive (+) values indicate cut and negative (-) values indicate fill.

Cut and Fill Calculations

- Compute the volume of cut-and-fill for each grid cell
- > Average the elevations for each grid cell times the cell area

	1	2	3	4	5
1	4.00	3.00	3.00	2.00	1.00
2	3.00	3.00	2.00	1.00	0.00
3	2.00	2.00	1.00	0.00	-1.00
4	2.00	1.00	0.00	-1.00	-2.00
5	0.00	-1.00	-2.00	-3.00	-4.00

> For the cell above, the volume of cut-and-fill is:

Volume =
$$\frac{(4+3+3+3) \, \text{ft.}}{4} (625 \, \text{ft.}^2) = 2,031.3 \, \text{ft.}^3 = 75.23 \, \text{yd.}^3$$

20

Cut and Fill Calculations

> For the cell to the right, compute the volume of cut-and-fill

	1	2	3	4	5
1	4.00	3.00	3.00	2.00	1.00
2	3.00	3.00	2.00	1.00	0.00
3	2.00	2.00	1.00	0.00	-1.00
4	2.00	1.00	0.00	-1.00	-2.00
5	0.00	-1.00	-2.00	-3.00	-4.00

> For the cell above, the volume of cut-and-fill is:

Volume =
$$\frac{(3+3+3+2) \, \text{ft.}}{4} (625 \, \text{ft.}^2) = 1,718.8 \, \, \text{ft.}^3 = 63.66 \, \text{yd.}^3$$

19

21

Cut and Fill Calculations

> For the cell to the right, compute the volume of cut-and-fill

	1	2	3	4	5
1	4.00	3.00	3.00	2.00	1.00
2	3.00	3.00	2.00	1.00	0.00
3	2.00	2.00	1.00	0.00	-1.00
4	2.00	1.00	0.00	-1.00	-2.00
5	0.00	-1.00	-2.00	-3.00	-4.00

> For the cell above, the volume of cut-and-fill is:

Volume =
$$\frac{(3+2+2+1) \text{ ft.}}{4} (625 \text{ ft.}^2) = 1,250 \text{ ft.}^3 = 46.30 \text{ yd.}^3$$

22

Cut and Fill Calculations

> For the cell to the right, compute the volume of cut-and-fill

	1	2	3	4	5
1	4.00	3.00	3.00	2.00	1.00
2	3.00	3.00	2.00	1.00	0.00
3	2.00	2.00	1.00	0.00	-1.00
4	2.00	1.00	0.00	-1.00	-2.00
5	0.00	-1.00	-2.00	-3.00	-4.00

> For the cell above, the volume of cut-and-fill is:

Volume =
$$\frac{(2+1+1+0)\text{ ft.}}{4}$$
 (625 ft.²) = 625 ft.³ = 23.15 yd.³

Cut and Fill Calculations

> For the cell to the right, compute the volume of cut-and-fill

	1	2	3	4	5
1	4.00	3.00	3.00	2.00	1.00
2	3.00	3.00	2.00	1.00	0.00
3	2.00	2.00	1.00	0.00	-1.00
4	2.00	1.00	0.00	-1.00	-2.00
5	0.00	-1.00	-2.00	-3.00	-4.00

> For the cell above, the volume of cut-and-fill is:

Volume =
$$\frac{(3+3+2+2) \text{ ft.}}{4} (625 \text{ ft.}^2) = 1,562.5 \text{ ft.}^3 = 58.87 \text{ yd.}^3$$

Cut and Fill Calculations

The resulting cut-and-fill volumes (yd.3) for each cell in the entire grid system is:

	1	2	3	4
1	75.23	63.66	46.30	23.15
2	57.87	46.30	23.15	0.00
3	40.51	23.15	0.00	-23.15
4	11.57	-11.57	-34.72	-57.87

> A sited model with a 5 x 5 grid system contains 4 x 4 cells

Cut and Fill Calculations

The total cut-and-fill for this site may be estimated by summing the cut-and-fill volumes for each cell

	1	2	3	4
1	75.23	63.66	46.30	23.15
2	57.87	46.30	23.15	0.00
3	40.51	23.15	0.00	-23.15
4	11.57	-11.57	-34.72	-57.87

- ➤ For this example, the total is: 284 yd.³
- ➤ Use Excel function: =sum(A1:D4)

25

26

Cut and Fill Calculations

The total cut this site may be estimated by summing the positive (+) cut-and-fill volumes for each cell

	1	2	3	4
1	75.23	63.66	46.30	23.15
2	57.87	46.30	23.15	0.00
3	40.51	23.15	0.00	-23.15
4	11.57	-11.57	-34.72	-57.87

- ➤ For this example, the total is: 411 yd.³
- ➤ Use Excel function: =sumif(A1:D4,">0")

Cut and Fill Calculations

The total fill this site may be estimated by summing the negative (-) cut-and-fill volumes for each cell

	1	2	3	4
1	75.23	63.66	46.30	23.15
2	57.87	46.30	23.15	0.00
3	40.51	23.15	0.00	-23.15
4	11.57	-11.57	-34.72	-57.87

- ➤ For this example, the total is: -127 yd.³
- ➤ Use Excel function: =sumif(A1:D4,"<0")

27

28

Cut and Fill Calculations

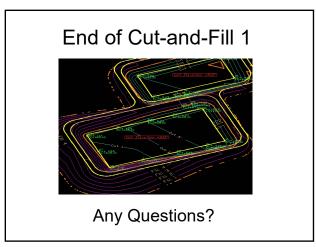
- An estimate of the cost of cut-and-fill for the entire site can be made by considering:
- > On-site cost (\$2.50/yd.3) for total cut-and-fill volume:

On site =
$$\left(\frac{\$2.50}{\text{yd.}^3}\right)$$
 [cut - fill] = $\left(\frac{\$2.50}{\text{yd.}^3}\right)$ [411-(-127)]yd.³

On site = \$1,345

Note: since fill volume is always (-) negative, to compute the total earthwork volume use (cut – fill)

Cut and Fill Calculations


- An estimate of the cost of cut-and-fill for the entire site can be made by considering:
- > Off-site cost: \$5/yd.3 for fill and \$3/yd.3 for cut

Off site =
$$\left(\frac{\cos t}{yd.^3}\right) \left| cut + fill \right| = \left(\frac{\cos t}{yd.^3}\right) \left| 411 - 127 \right| yd.^3$$

Off site =
$$\left(\frac{\$3}{\text{yd.}^3}\right) |284 \text{ yd.}^3| = \$852$$

TotalCost = \$1,345 + \$852 = \$2,197

29

31