Reinforced Concrete Beam Example #1

Let's use the failure models to predict the ultimate strength-toweight (SWR) of one of our reinforced concrete beams from lab

Consider a beam with the following characteristics:

Concrete strength $f_c = 4,000 \text{ psi}$

Steel strength $f_{\nu} = 60.000$ psi

The tension reinforcement will be 1 #4 rebars

The shear reinforcement will be #3 rebars, U-shaped, 3 in. spacing

Use minimum cover of 0.75 in. and a width to accommodate the reinforcement

1

3

5

Reinforced Concrete Beam Example #1

Reinforcing bars are denoted by the bar number. The diameter and area of standard rebars are shown below.

Bar#	Diameter (in.)	As (in.2)
3	0.375	0.11
4	0.500	0.20
5	0.625	0.31
6	0.750	0.44
7	0.875	0.60
8	1.000	0.79
9	1.128	1.00
10	1.270	1.27
11	1.410	1.56

2

4

6

Reinforced Concrete Beam Example #1

We now have values for b, d, and A_s

$$M = A_s f_y \left(d - 0.59 \frac{A_s f_y}{f'_c b} \right)$$

The A_s for one #4 rebars is:

$$A_{\rm s} = 0.20 \ {\rm in.}^2$$

Reinforced Concrete Beam Example #1

Compute the moment capacity

$$M = A_s f_y \left(d - 0.59 \frac{A_s f_y}{f'_c b} \right)$$

$$= 0.20 \text{ in.}^2 (60 \text{ ksi}) \left(4.625 \text{ in.} - 0.59 \frac{0.20 \text{ in.}^2 (60 \text{ ksi})}{4 \text{ ksi} (2.75 \text{ in.})} \right)$$

= 47.78
$$k \cdot in \Rightarrow P_{tension} = \frac{M}{4} = 11.94 \text{ kips}$$

Reinforced Concrete Beam Example #1

Let's check the shear model

$$P_{shear} = 2\left(\frac{A_{v}f_{y}d}{s} + 2\sqrt{f'_{c}}bd\right)$$

Area of a #3 rebars

$$=2\Bigg(\frac{2\big(0.11\text{in.}^2\big)\big(60,000\,psi\big)4.625\text{in.}}{3\text{in.}} + 2\sqrt{4,000\,psi}\,\big(2.75\text{in.}\big)\big(4.625\text{in.}\big)$$
Shear reinforcement spacing

$$= 43,917 lb. = 43.9 kips$$

Since $P_{tension} < P_{shear}$ therefore $P_{tension}$ controls

7

Reinforced Concrete Beam Example #1

Let's check the reinforcement ratio

$$\rho = \frac{A_s}{bd}$$

$$\rho = 0.85 \beta_1 \frac{c}{d} \frac{f'_c}{f_y}$$

To compute ρ , first we need to estimate β_1

8

Reinforced Concrete Beam Example #1

The height of the stress box, \boldsymbol{a} , is defined as a percentage of the depth to the neural axis

$$f'_c \le 4000 \ psi \implies \beta_1 = 0.85$$

$$f'_{c} \ge 4000 \ psi$$

$$\beta_1 = 0.85 - 0.05 \left(\frac{f'_c - 4000}{1000} \right) \ge 0.65$$

$$\beta_1 = 0.85 - 0.05 \left(\frac{4,000 - 4,000}{1,000} \right) = \boxed{0.85}$$

9

Reinforced Concrete Beam Example #1

Check the reinforcement ratio for the maximum steel allowed

$$\rho = \frac{A_s}{bd} = \frac{0.20 \text{in.}^2}{2.75 \text{in.} (4.625 \text{in.})} = 0.0157$$

$$\rho_{tension} = 0.85 \beta_1 \frac{c}{d} \frac{f'_c}{f_y} = 0.85(0.85)0.375 \frac{4 \, ksi}{60 \, ksi}$$
$$= 0.0181$$

$$ho$$
 < $ho_{ ext{tension}}$

10

Reinforced Concrete Beam Example #1

The minimum force controls

$$P_{tension} = 11.94 \ kips$$

$$P_{shear} = 43.92 \, kips$$

$$P = 11.94 \, kips$$

Reinforced Concrete Beam Example #1

An estimate of the weight of the beam can be made as: $W = \frac{(2.75 \, \text{in.})(6 \, \text{in.})(30 \, \text{in.})}{1728 \, \text{in.}^3_{\text{ft.}^3}} \left(\frac{145 \, \text{lb.}}{\text{ft.}^3} \right)$ Additional weight of rebars $+ \frac{(0.20 \, \text{in.}^2)(30 \, \text{in.})}{1728 \, \text{in.}^3_{\text{ft.}^3}} \left(\frac{490 \, \text{lb.} - 145 \, \text{lb.}}{\text{ft.}^3} \right)$ $= 41.54 \, \text{lb.} + 1.20 \, \text{lb.} = \boxed{42.74 \, \text{lb.}}$

11 12

13

17

Reinforced Concrete Beam Example #1

In summary, this reinforced concrete beam will fail in tension

Reinforced Concrete Beam Example #1

The cost of steel may be estimated as follows:

Cost of steel =
$$\frac{A_s L}{1,728^{\text{in.}^3}/_{\text{ft}^3}} \left(490 \frac{\text{lb.}}{\text{ft.}^3}\right) \left(\frac{\$530}{\textit{ton}}\right) \left(\frac{\textit{ton}}{2,000 \text{ lb.}}\right)$$

where A_s is the cross-sectional area of steel rebars, L is the length of the steel rebars, and 490 lb./ft.³ is the unit weight of steel.

Reinforced Concrete Beam Example #1

For example, if one #4 rebar in placed in the beam the steel cost is estimated as:

Bar#	Diameter (in.)	As (in.2)	
3	0.375	0.11	Cost of steel =
4	0.500	0.20	0031 01 31661 -
5	0.625	0.31	
6 7	0.750	0.44	
7	0.875	0.60	$(0.2in.^2)(30in.)$ (10.2 lb.) (\$530) (10.1)
8	1.000	0.79	
9	1.128	1.00	$-\frac{1}{1,728}$ in. $\frac{3}{63}$ $\frac{130}{\text{ft.}^3}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$
10	1.270	1.27	, \(\frac{1}{1}\)
11	1.410	1.56	
			= \$0.45

16

18

14

Reinforced Concrete Beam Example #1

Consider the following mix for a yd.³ of concrete developed using the ACI mix design procedure.

Component	Amount (lb)
Water	315
Cement	553
Coarse aggregate	1,641
Fine aggregate	1,431

15

Reinforced Concrete Beam Example #1

The cost of the concrete required for a 2.75 in. by 6 in. by 30 in. beam is estimated as:

Cost of cement =
$$\frac{2.75 \text{in.} (6 \text{in.}) 30 \text{in.}}{1,728 \text{in}^3/\text{ft.}^3} \left(\frac{553 \text{ lb.}}{27 \text{ ft.}^3}\right) \left(\frac{\$130}{\text{ton}}\right) \left(\frac{\text{ton}}{2,000 \text{ lb.}}\right)$$

Cost of coarse aggregate =
$$\frac{2.75 \text{in.}(6 \text{in.})30 \text{in.}}{1,728 \text{m}^3/\text{h}^3} \left(\frac{1,641 \text{lb.}}{27 \text{ ft.}^3}\right) \left(\frac{\$18}{\text{ton}}\right) \left(\frac{\text{ton}}{2,000 \text{ lb.}}\right)$$

= $\$0.16$

Reinforced Concrete Beam Example #1

The cost of the concrete required for a 2.75 in. by 6 in. by 30 in. beam is estimated as:

Cost of fine aggregate =
$$\frac{2.75 \text{in.} (6 \text{in.}) 30 \text{ in.}}{1,728 \text{ n}^3/\text{s}^3} \left(\frac{1,431 \text{ lb.}}{27 \text{ ft.}^3}\right) \left(\frac{\$10}{\text{ton}}\right) \left(\frac{\text{ton}}{2,000 \text{ lb.}}\right)$$
$$= \$0.08$$

The cost concrete is estimated as: \$0.62

The cost of the reinforced concrete beam is estimated as: \$1.07

Reinforced Concrete Beam Example #1

The cost adjustment for the reinforced concrete beam is:

If cost < \$1.50 then: Cost Factor = 1

If cost > \$1.50 then:

 $Cost Factor = \frac{\$1.50}{Cost}$

Reinforced Concrete Beam Example #1

If the unadjusted **SWR** for a beam is 279 and the cost is \$1.07, then the cost adjusted **SWR** is:

 $SWR_{Adjusted} = SWR \times Cost \ Factor$

 $SWR_{Adjusted} = 279 \times 1 = 279$

19

Reinforced Concrete Beam Example #1

Questions?

20