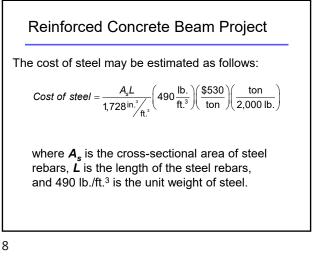


2

5

Reinforced Concrete Beam Project

The reinforced concrete beam project schedule:


Date	Activity
February 21-23	Introduction; concrete beam #1
February 28 - March 2	Break beam #1; develop concrete beam #2
March 14-16	Break beam #2; develop concrete beam #3
March 21-23	Break beam #3; develop concrete beam #4
March 28-30	Break beam #4; develop final concrete beam
April 4-6	Break final concrete beam

Reinforced Concrete Beam Project

The cost of each beam will be estimated using the following data:

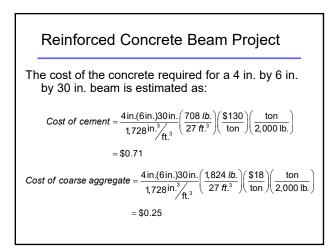
Material	Cost
Portland Type I cement	\$130/ton
Coarse aggregate	\$18/ton
Fine aggregate	\$10/ton
Steel reinforcement	\$530/ton
Admixtures - water reducer	\$15/gal.
Admixture - silica fume	\$500/ton
Fiber reinforcement	Market value (see Dr. Camp)

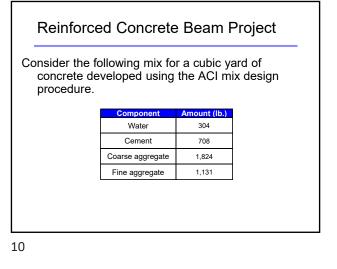
7

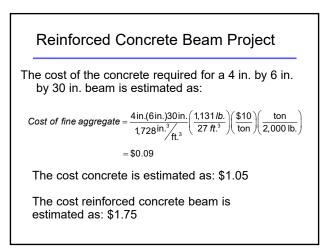
Reinforced Concrete Beam Project For example, if one #5 rebar in placed in the beam the steel cost is estimated as:
 Bar #
 Diameter (in)
 As (in²)

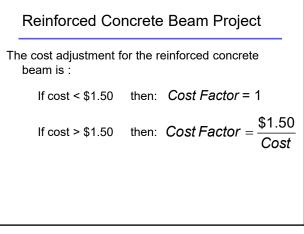
 2
 0.125
 0.0245

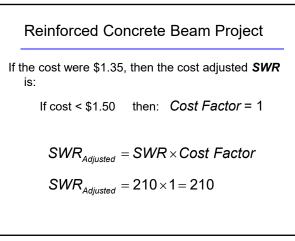
 3
 0.375
 0.11


 4
 0.500
 0.20


 5
 0.625
 0.31


 6
 0.750
 0.44


 7
 0.9275
 0.602
Cost of steel $=\frac{(0.31 \text{ in.}^2)(30 \text{ in.})}{1,728 \text{ in.}^3/\text{ft.}^3} \left(490 \frac{\text{lb.}}{\text{ft.}^3}\right) \left(\frac{\$530}{\text{ton}}\right) \left(\frac{\text{ton}}{2,000 \text{ lb.}}\right)$ 0.875 0.60 1.000 0.79 1.00 1.128 10 1.27 1.270 1.56 1.410 = \$0.70


9

Reinforced Concrete Beam Project
For example, if the unadjusted *SWR* for a beam is 210 and the cost is \$1.75, then the cost adjusted *SWR* is:
If cost > \$1.50 then:
$$Cost Factor = \frac{$1.50}{Cost}$$

 $SWR_{Adjusted} = 210 \times \frac{$1.50}{$1.75} = 180$

