Reinforced Concrete Beam Project

Herff College of Engineering 2022 Reinforced Concrete Competition

1

Reinforced Concrete Beam Project

- The objective of this project is to develop the strongest reinforced concrete (RC) beam as measured by the cost-adjusted strength-toweight ratio.
- > The strength-to-weight ratio (SWR) is:

$$SWR = \frac{Ultimate\ Load(lb.)}{Beam\ Weight(lb.)}$$

> The strength of the beam is the ultimate load recorded during testing.

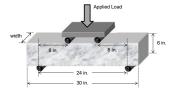
2

Reinforced Concrete Beam Project

> A cost factor will be computed as follows:

If cost < \$3 then: Cost Factor = 1

If cost > \$ then: $Cost Factor = \frac{\phi S}{Cost}$


Using your cost factor, the cost-adjusted SWR_{Adjusted} is computed as:

$$SWR_{Adjusted} = SWR \times Cost \ Factor$$

3

Reinforced Concrete Beam Project

The concrete beam <u>must</u> have a length of 30 in., a height of 6 in., and have a prismatic cross-section. Maximum width of the beam is 6 in.

In designing the reinforced concrete beam groups may consider the use of admixtures, various types of reinforcement, various types of cements and aggregates, and non-rectangular cross-sections.

4

Reinforced Concrete Beam Project

The reinforced concrete beam problem poses several challenges to the student:

- selection of the shape and size of the cross-section of the beam;
- design of a concrete mix based on strength and workability;
- 3. design of the reinforcement (type of reinforcement, amount, and position in the beam), and
- 4. the prediction of the SWR of the beam.

Reinforced Concrete Beam Project

The reinforced concrete beam project schedule:

Date	Activity
February 22-24	Introduction; concrete beam #1
March 1-3	Break beam #1; develop concrete beam #2
March 15-17	Break beam #2; develop concrete beam #3
March 22-24	Break beam #3; develop concrete beam #4
March 29-31	Break beam #4; develop final concrete beam
April 5-7	Break final concrete beam

5

Reinforced Concrete Beam Project

The cost of each beam will be estimated using the following data:

Material	Cost
Portland Type I cement	\$123/ton
Coarse aggregate	\$18/ton
Fine aggregate	\$10/ton
Steel reinforcement	\$1,500/ton
Admixtures - water reducer	\$15/gal.
Admixture - silica fume	\$100/ton
Fiber reinforcement	Market value (see Dr. Camp)
	,

Reinforced Concrete Beam Project

The cost of steel may be estimated as follows:

Cost of steel =
$$\frac{A_s L}{1,728 \, \text{in.}^3 / \text{ft.}^3} \left(490 \, \frac{\text{lb.}}{\text{ft.}^3}\right) \left(\frac{\$1,500}{\text{ton}}\right) \left(\frac{\text{ton}}{2,000 \, \text{lb.}}\right)$$

where A_s is the cross-sectional area of steel rebars, L is the length of the steel rebars, and 490 lb./ft.³ is the unit weight of steel.

7

Reinforced Concrete Beam Project

For example, if one #5 rebar in placed in the beam the steel cost is estimated as:

Bar#	Diameter (in)	As (in²)	
2	0.125	0.0245	Cost of steel
2	0.375	0.11	
	0.500	0.20	
4 5 6 7	0.625	0.31	$= \frac{(0.31 \text{in.}^2)(30 \text{in.})}{1728 \text{in.}^3/1} \left(490 \frac{\text{lb.}}{\text{ft.}^3}\right) \left(\frac{\$1,500}{\text{ton}}\right) \left(\frac{\text{ton}}{2,000 \text{lb.}}\right)$
6	0.750	0.44	= (490 11 490 11
	0.875	0.60	1,728 in. 3 / _{4.3} (in 3 /L ton 1 /L 2,000 lb.)
8 9	1.000	0.79	ft.3
9	1.128	1.00	
10	1.270	1.27	
11	1.410	1.56	£4.00
			= \$1.98

Reinforced Concrete Beam Project

Consider the following mix for a cubic yard of concrete developed using the ACI mix design procedure.

Component	Amount (lb.)
Water	304
Cement	708
Coarse aggregate	1,824
Fine aggregate	1,131

9

Reinforced Concrete Beam Project

The cost of the concrete required for a 4 in. by 6 in. by 30 in. beam is estimated as:

Cost of cement =
$$\frac{4 \text{in.(6in.)30in.}}{1,728 \text{in.}^3/\text{ft.}^3} \left(\frac{708 \text{ lb.}}{27 \text{ ft.}^3}\right) \left(\frac{\$123}{\text{ton}}\right) \left(\frac{1000 \text{ lb.}}{2,000 \text{ lb.}}\right)$$

= $\$0.67$

Cost of coarse aggregate =
$$\frac{4 \text{in.}(6 \text{in.})30 \text{in.}}{1,728 \text{in.}^{3}/\text{ft.}^{3}} \left(\frac{1,824 \text{ lb.}}{27 \text{ ft.}^{3}}\right) \left(\frac{\$18}{\text{ton}}\right) \left(\frac{\text{ton}}{2,000 \text{ lb.}}\right)$$
$$= \$0.24$$

10

8

Reinforced Concrete Beam Project

The cost of the concrete required for a 4 in. by 6 in. by 30 in. beam is estimated as:

Cost of fine aggregate =
$$\frac{4\text{in.}(6\text{in.})30\text{in.}}{1,728\text{in.}^{3}/\text{ft.}^{3}} \left(\frac{1,131\text{lb.}}{27\text{ ft.}^{3}}\right) \left(\frac{\$10}{\text{ton}}\right) \left(\frac{\text{ton}}{2,000\text{ lb.}}\right)$$
$$= \$0.09$$

The cost concrete is estimated as: \$1.00

The cost reinforced concrete beam is estimated as: \$2.98

11 12

Reinforced Concrete Beam Project

The cost adjustment for the reinforced concrete beam is:

If cost < \$3 then: Cost Factor = 1

If cost > \$3 then: $Cost Factor = \frac{\$3}{Cost}$

Reinforced Concrete Beam Project

For example, if the unadjusted *SWR* for a beam is 210 and the cost is \$2.98, then the cost adjusted *SWR* is:

$$SWR_{Adjusted} = SWR \times Cost Factor$$

$$SWR_{Adjusted} = 210 \times 1 = 210$$

13

Reinforced Concrete Beam Project

If the cost were \$3.50, then the cost adjusted **SWR** is:

 $SWR_{Adjusted} = SWR \times Cost Factor$

$$SWR_{Adjusted} = 210 \times \frac{\$3}{\$3.50} = 180$$

14

Reinforced Concrete Beam Project

15

Reinforced Concrete Beam Project

Any questions?

16