57

59

Reinforced Concrete Beam Analysis

Let's use the failure models to predict the ultimate strength-toweight (SWR) of one of our reinforced concrete beams from lab

Consider a beam with the following characteristics:

Concrete strength f_c = 5,000 psi

Steel strength f_{v} = 60,000 psi

The tension reinforcement will be 2 #3 rebars

The shear reinforcement will be #3 rebars bent in a U-shape spaced at

Concrete cover and bar spacing is 3/4 inches.

Use the minimum width to accommodate the reinforcement

Reinforced Concrete Beam Analysis

Reinforcing bars are denoted by the bar number. The diameter and area of standard rebars are shown below.

Bar#	Diameter (in.)	As (in.2)
3	0.375	0.11
4	0.500	0.20
5	0.625	0.31
6	0.750	0.44
7	0.875	0.60
8	1.000	0.79
9	1.128	1.00
10	1.270	1.27
11	1.410	1.56

58

60

62

Reinforced Concrete Beam Analysis

We now have values for b, d, and A_s

Reinforced Concrete Beam Analysis

Compute the moment capacity

$$M = A_s f_y \left(d - 0.59 \frac{A_s f_y}{f'_c b} \right)$$

$$= 0.22 \text{in.}^2 (60 \text{ksi}) \left(4.69 \text{in.} - 0.59 \frac{0.22 \text{in.}^2 (60 \text{ksi})}{5 \text{ksi} (3.75 \text{in.})} \right)$$

$$= 56.4 \text{ k} \cdot \text{in.} \implies P = \frac{M}{4} = 14.1 \text{ kips}$$

61

63

Reinforced Concrete Beam Analysis

Let's check the reinforcement ratio

$$\rho = \frac{A_s}{bd}$$

$$\rho = 0.85 \beta_1 \frac{c}{d} \frac{f'_c}{f_y}$$

To compute ρ , first we need to estimate β_1

Reinforced Concrete Beam Analysis

 P_{tension} = 14.1 k < P_{shear} = 35.9 k; therefore P_{tension} controls

An β_1 estimate is given as:

$$f'_{c} \le 4000 \ psi \implies \beta_{1} = 0.85$$

$$f'_{c} \ge 4000 \ psi$$

$$\beta_{1} = 0.85 - 0.05 \left(\frac{f'_{c} - 4000}{1000} \right) \ge 0.65$$

$$\beta_{1} = 0.85 - 0.05 \left(\frac{5,000 - 4,000}{1,000} \right) = \boxed{0.80}$$

65

Reinforced Concrete Beam Analysis

Check the reinforcement ratio for the maximum steel allowed for tension controlled behavior or c/d = 0.375

$$\rho = 0.85 \beta_1 \frac{c}{d} \frac{f'_c}{f_y} = 0.85(0.80)0.375 \frac{5 \text{ ksi}}{60 \text{ ksi}}$$

$$= 0.021$$

$$\rho = \frac{A_s}{bd} = \frac{0.22 \text{ in.}^2}{3.75 \text{ in.} (4.69 \text{ in.})} = 0.0125$$

The amount of steel in this beam is tension-controlled behavior.

66

68

64

Reinforced Concrete Beam Analysis

An estimate of the weight of the beam can be made as:

$$W = \frac{b\,h\,L}{1728\,\text{in}\,.^3/\text{ft}\,.^3} \left(\frac{145\,\text{lb}\,.}{\text{ft}\,.^3}\right)$$
Additional weight of rebars
$$+\frac{A_s\,L}{1728\,\text{in}\,.^3/\text{ft}\,.^3} \left(\frac{490\,\text{lb}\,.-145\,\text{lb}\,.}{\text{ft}\,.^3}\right)$$

An estimate of the weight of the beam can be made as: $W = \frac{(3.75 \text{in.})(6 \text{in.})(30 \text{in.})}{1728 \text{in.}^3/\text{ft.}^3} \left(\frac{145 \text{lb.}}{\text{ft.}^3}\right)$ Additional weight of rebars

Reinforced Concrete Beam Analysis

 $+\frac{(0.22\text{in.}^2)(30\text{in.})}{1728\text{ in.}^3/\text{ft.}^3} \left(\frac{490\text{lb.} - 145\text{lb.}}{\text{ft.}^3}\right)$

= 56.64 lb. + 1.32 lb. = 57.96 lb.

67

70

In summary, this reinforced concrete beam will fail in tension

69