

Reinforced Concrete Beams

Mathematical model for failure in a reinforced concrete beam

Reinforced Concrete Beams

In the reinforced concrete beam project, there are three different failure modes we need to investigate

Reinforced Concrete Beams

First, let's consider the loading of the beam.

Reinforced Concrete Beams

The purpose of RC is to reinforce areas in concrete that are weak in tension.

Reinforced Concrete Beams

Let's look at the internal forces acting on the beam and locate the tension zones.

Reinforced Concrete Beams

The shear between the applied load and the support is constant V = P/2.

Reinforced Concrete Beams

The shear between the applied load and the support is constant V = P/2.

Reinforced Concrete Beams

The shear between the applied load and the support is constant V = P/2.

Reinforced Concrete Beams

The shear between the applied load and the support is constant V = P/2.

Reinforced Concrete Beams

The shear between the applied load and the support is constant V = P/2.

The shear force V = P/2 is constant between the applied load and the support.

Reinforced Concrete Beams

Let's look at the internal moment at the section between the supports and the applied load

$$O^{+} \sum M = \frac{P}{2} x$$

$$X_{\text{max}} = 8 \text{ in.}$$

$$M \text{ is the bending moment}$$

$$\frac{P}{2} - x \longrightarrow P/2$$

$$M = 4P \text{ (lb.-in.)}$$

Reinforced Concrete Beams

- Let's look at the internal moment at the section between the supports and applied load
- The bending moment is the internal reaction to forces that cause a beam to bend.
- > Bending moment can also be referred to as torque

The top of the beam is in compression, and the bottom of the beam is in tension.

Reinforced Concrete Beams

To model the behavior of a reinforced concrete beam, we will need to understand three distinct regions in the beam.

Two are illustrated below; the third is called shear.

Reinforced Concrete Beams

We need models to help us with compression, tension, and

Reinforced Concrete Beams

We need models to help us with compression, tension, and shear failures in concrete.

Reinforced Concrete Beams

We need models to help us with compression, tension, and shear failures in concrete.

Reinforced Concrete Beams

We need models to help us with compression, tension, and shear failures in concrete.

Reinforced Concrete Beams

Compression and tension failures in a reinforced concrete beam

Reinforced Concrete Beams

Compression and tension failures in a reinforced concrete beam

Reinforced Concrete Beams

Shear failure in a reinforced concrete beam

Reinforced Concrete Beams

Shear failure in a reinforced concrete beam

Reinforced Concrete Beams

Questions?

