

Reinforced Concrete Beams

Mathematical model for failure in an reinforced concrete beam

Reinforced Concrete Beams

In the reinforced concrete beam project, there are three different failure mode we need to investigate

Reinforced Concrete Beams

First, lets consider the loading of the beam

Reinforced Concrete Beams

The purpose of RC is the reinforcement of areas in concrete that are weak in tension

Reinforced Concrete Beams

Let's look at the internal forces acting on the beam and locate the tension zones

Reinforced Concrete Beams

The shear between the applied load and the support is constant V = P/2

Reinforced Concrete Beams

The shear between the applied load and the support is constant V = P/2

Reinforced Concrete Beams

The shear between the applied load and the support is constant V = P/2

$$\uparrow \uparrow \sum F = 0 = \frac{P}{2} - V$$
$$V = \frac{P}{2}$$

Reinforced Concrete Beams

The shear between the applied load and the support is constant V = P/2

$$^{+} \uparrow \sum F = 0 = \frac{P}{2} - V$$

$$V = \frac{P}{2}$$

Reinforced Concrete Beams

The shear between the applied load and the support is constant V = P/2

The shear force V = P/2 is constant between the applied load and the support

$$\uparrow \uparrow \sum F = 0 = \frac{P}{2} - V$$

$$V = \frac{P}{2}$$

Reinforced Concrete Beams

Let's look at the internal moment at section between the supports and applied load

$$O^{+} \sum M = \frac{P}{2} X$$

$$X_{\text{max}} = 8 \text{ in.}$$

$$M \text{ is the bending moment}$$

$$\frac{P}{2} \longrightarrow P/2$$

$$M = 4P \text{ (lb.-in.)}$$

Reinforced Concrete Beams

- Let's look at the internal moment at section between the supports and applied load
- The bending moment is the internal reaction to forces which cause a beam to bend.
- > Bending moment can also be referred to as torque

